摘要:
A micromanifold for connecting external capillaries to the inlet and/or outlet ports of a microfluidic device can employ a ferrule/capillary assembly that includes: (a) a ferrule comprising an elongated member and having a bore traversing from a proximal end to a distal end of the member, wherein the bore has an inner surface and wherein the distal end of the ferrule has a tapered, threaded exterior surface, and (b) a capillary that is positioned within the bore wherein the capillary's outer surface is in direct contact with the bore's inner surface. No mating sleeve is required for the one-piece ferrule. Alternatively, the capillaries can be bonded to channels that traverse the manifold and therefore obviate the need for a ferrule.
摘要:
Portable devices and methods for determining the presence of a target analyte using a portable device are provided. The portable device is preferably hand-held. A sample is injected to the portable device. A microfluidic separation is performed within the portable device and at least one separated component detected by a detection module within the portable device, in embodiments of the invention. A target analyte is identified, based on the separated component, and the presence of the target analyte is indicated on an output interface of the portable device, in accordance with embodiments of the invention.
摘要:
We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
摘要:
A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. Desirably, the distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.
摘要:
Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.
摘要:
A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.
摘要:
A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.
摘要:
An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.
摘要:
We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.