摘要:
Planar cavity Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structure are provided. The method includes forming at least one Micro-Electro-Mechanical System (MEMS) cavity having a planar surface using a reverse damascene process.
摘要:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a wiring layer and substrate. The method further includes forming an insulator layer over the first sacrificial cavity layer. The method further includes performing a reverse damascene etchback process on the insulator layer. The method further includes planarizing the insulator layer and the first sacrificial cavity layer. The method further includes venting or stripping of the first sacrificial cavity layer to a planar surface for a first cavity of the MEMS.
摘要:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming a wiring layer on a substrate comprising actuator electrodes and a contact electrode. The method further includes forming a MEMS beam above the wiring layer. The method further includes forming at least one spring attached to at least one end of the MEMS beam. The method further includes forming an array of mini-bumps between the wiring layer and the MEMS beam.
摘要:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming at least one fixed electrode on a substrate. The method further includes forming a Micro-Electro-Mechanical System (MEMS) beam with a varying width dimension, as viewed from a top of the MEMS beam, over the at least one fixed electrode.
摘要:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a lower wiring layer. The method further includes forming a layer. The method further includes forming a second sacrificial cavity layer over the first sacrificial layer and in contact with the layer. The method further includes forming a lid on the second sacrificial cavity layer. The method further includes forming at least one vent hole in the lid, exposing a portion of the second sacrificial cavity layer. The method further includes venting or stripping the second sacrificial cavity layer such that a top surface of the second sacrificial cavity layer is no longer touching a bottom surface of the lid, before venting or stripping the first sacrificial cavity layer thereby forming a first cavity and second cavity, respectively.
摘要:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming fixed actuator electrodes and a contact point on a substrate. The method further includes forming a MEMS beam over the fixed actuator electrodes and the contact point. The method further includes forming an array of actuator electrodes in alignment with portions of the fixed actuator electrodes, which are sized and dimensioned to prevent the MEMS beam from collapsing on the fixed actuator electrodes after repeating cycling. The array of actuator electrodes are formed in direct contact with at least one of an underside of the MEMS beam and a surface of the fixed actuator electrodes.
摘要:
A method of forming a Micro-Electro-Mechanical System (MEMS) includes forming a lower electrode on a first insulator layer within a cavity of the MEMS. The method further includes forming an upper electrode over another insulator material on top of the lower electrode which is at least partially in contact with the lower electrode. The forming of the lower electrode and the upper electrode includes adjusting a metal volume of the lower electrode and the upper electrode to modify beam bending.
摘要:
Micro-electro-mechanical structure (MEMS) capacitor devices, capacitor trimming for MEMS capacitor devices, and design structures are disclosed. The method includes identifying a process variation related to a formation of micro-electro-mechanical structure (MEMS) capacitor devices across a substrate. The method further includes providing design offsets or process offsets in electrode areas of the MEMS capacitor devices across the substrate, based on the identified process variation.
摘要:
A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via.
摘要:
A photomask that is used as a light filter in an exposure system is made of at least one layer of material comprising one or more transparent regions and one or more non-transparent regions. The difference between the transparent regions and the non-transparent regions defines the features that will be illuminated by the exposure system on a photoresist that will be exposed using the exposure system. The features comprise one or more device shapes and at least one sub-lithographic shape that will be exposed upon the photoresist. The sub-lithographic shape has an sub-lithographic shape size that is limited in such a way that the sub-lithographic shape causes a physical change only in a surface of the photoresist. Therefore, because the sub-lithographic shape is so small, it avoids forming an opening through the photoresist after the photoresist is developed and only causes a change on the surface of the photoresist.