Abstract:
A composite electronic component includes an element part and an electrostatic discharge (ESD) protection part disposed on the element part. The ESD protection part includes first and second discharge electrodes having a gap formed therebetween, a discharge layer disposed between the first and second discharge electrodes and in the gap, and a multilayer insulating layer covering the discharge layer and including at least two insulating layers having different breakdown voltage (BDV) values.
Abstract:
This invention relates to a resin composition with good workability, including a liquid crystal oligomer, an epoxy resin, or a resin mixture thereof, and an inorganic filler having a nanocone shape, and to an insulating film for a printed circuit board, and a prepreg, which are manufactured using the resin composition.
Abstract:
Disclosed herein are a prepreg, including: an inorganic fiber, an organic fiber, or a hybrid fiber obtained by mix-weaving the inorganic fiber and the organic fiber, coated with a thermally conductive component or impregnated with a thermally conductive component; and a cross-linkable resin for impregnating the fiber therewith, a method for manufacturing the same, and a copper clad laminate using the same, so that the prepreg and the copper clad laminate can maintain a low coefficient of thermal expansion and a high modulus of elasticity and have excellent heat radiation property.
Abstract:
A heat radiating substrate having strengthened insulation resistance and heat conductivity, and a manufacturing method thereof. The method for manufacturing a heat radiating substrate includes: preparing a metal substrate; performing an anodizing process on the metal substrate to form an anodic oxidation layer; filling surface pores of the anodic oxidation layer with an insulating material; and forming a metal wiring layer on the anodic oxidation layer. High insulation resistance and heat conductivity can be obtained by filling surface pores formed in an anodizing process with an insulating material.
Abstract:
Disclosed herein are an electrode pattern and a method of manufacturing the same, and a printed circuit board applied with the electrode pattern and a method of manufacturing the same. In order to increase a heat dissipation effect, disclosed herein are an electrode pattern including electrode layers with a predetermined pattern; and insulators insulating the electrode layers from each other, in which the insulators are made of metal oxide, a method of manufacturing the same, and a printed circuit board applied with the electrode pattern and a method of manufacturing the same.
Abstract:
A common mode filter includes a body including a filter portion and an electrostatic protection portion, first to fourth external electrodes disposed on an external surface of the body, a ground electrode disposed on the external surface of the body, a first coil included in the filter portion and electrically connected to the first and second external electrodes, and a second coil included in the filter portion and electrically connected to the third and fourth external electrodes. The electrostatic protection portion includes discharge electrodes electrically connected to at least one of the first to fourth external electrodes and the ground electrode, a discharge part including conductive particles, a first organic-inorganic composite insulating layer disposed on the discharge electrodes and the discharge part, a magnetic cover layer disposed on the first organic-inorganic composite insulating layer, and a first inorganic insulating layer.
Abstract:
Disclosed herein are an insulation resin composition for a printed circuit board including: an epoxy resin, a first inorganic filler having thermal conductivity of 20 W/mK or more, and a second inorganic filler having relative permittivity less than 10, and an insulating film, a prepreg, and a printed circuit board.
Abstract:
This invention relates to a resin composition with enhanced heat-releasing properties, including a liquid crystal oligomer, an epoxy resin, or a resin mixture thereof, and graphene oxide as a filler, and to a heat-releasing film for an electronic device, an insulating film for a printed circuit board, and a prepreg, which are manufactured using the resin composition.
Abstract:
This invention relates to an insulating film for a printed circuit board having improved thermal conductivity, a manufacturing method thereof and a printed circuit board using the same, wherein the insulating film includes an amphiphilic block copolymer having a vertical structure formed in a thickness direction by chemically coupling a hydrophilic compound with a hydrophobic compound.
Abstract:
A common mode filter includes a body including a filter portion and an electrostatic protection portion, first to fourth external electrodes disposed on an external surface of the body, a ground electrode disposed on the external surface of the body, a first coil included in the filter portion and electrically connected to the first and second external electrodes, and a second coil included in the filter portion and electrically connected to the third and fourth external electrodes. The electrostatic protection portion includes discharge electrodes electrically connected to at least one of the first to fourth external electrodes and the ground electrode, a discharge part including conductive particles, a first organic-inorganic composite insulating layer disposed on the discharge electrodes and the discharge part, a magnetic cover layer disposed on the first organic-inorganic composite insulating layer, and a first inorganic insulating layer.