Abstract:
A method of writing data in a resistive memory device having a memory cell array divided into first and second tiles includes; performing a first simultaneous write operation by performing a set write operation performed on resistive memory cells of the first tile while simultaneously performing a reset write operation on resistive memory cells of the second tile in response to the write command, and performing a second simultaneous write operation by performing a reset write operation on resistive memory cells of the first tile while simultaneously performing a set write operation on resistive memory cells of the second tile in response to the write command.
Abstract:
A method of operating a memory device, which includes of memory cells respectively arranged in regions where first signal lines and second lines cross each other, includes determining a plurality of pulses so that each of the plurality of pulses that are sequentially applied to a selected memory cell among the plurality of memory cells is changed according to a number of times of executing programming loops. In response to the change of the plurality of pulses, at least one of a first inhibit voltage and a second inhibit voltage is determined so that a voltage level of at least one of the first and second inhibit voltages that are respectively applied to unselected first and second signal lines connected to unselected memory cells among the plurality of memory cells is changed according to the number of times of executing the programming loops.
Abstract:
A memory device includes a memory cell array including a plurality of NAND strings, wherein each of the NAND strings includes a ground selection transistor connected to a ground selection line, memory cells connected to word lines, and a string selection transistor connected to a string selection line, wherein the ground selection line, the word lines, and the string selection line are vertically stacked on a substrate. A control logic adjusts a ground selection line voltage applied to the ground selection line or a string selection line voltage applied to the string selection line to a negative level in at least a portion of a program section during which a program operation related to a memory cell selected from among the memory cells is performed.
Abstract:
A memory device is provided as follows. A memory cell array includes strings including first and second strings. Each string includes a ground selection transistor and cell transistors. First and second ground selection lines are connected to a gate of a first ground selection transistor of the first string and a gate of a second ground selection transistor of the second string, respectively. First and second cell gate lines are connected to a gate of a first cell transistor of the first string and a gate of a second cell transistor of the second string, respectively. A first interconnection unit electrically connects a first portion of the first cell gate line to a first portion of the second cell gate line. A second interconnection unit electrically connects a second portion of the first cell gate line to a second portion of the second cell gate line.
Abstract:
A method of operating a memory system includes reading data of first memory cells, the first memory cells being connected to a first wordline from among a plurality of wordlines, the plurality of wordlines including one or more dummy wordlines and one or more normal wordlines; determining whether the first wordline is one of the one or more dummy wordlines by determining, based on the read data, a number of the first memory cells having a first threshold voltage state, the one or more dummy wordlines being wordlines the memory cells of which have been programmed with dummy data, the one or more normal wordlines being wordlines that are not dummy wordlines; and performing a repair algorithm for correcting an error in the read data, selectively according to a result of the determination.
Abstract:
A resistive memory device including multiple resistive memory cells arranged in regions where first signal lines and second signal lines cross each other, and a method of operating the resistive memory device, are provided. The method includes applying a first voltage to a first line, from among unselected first signal lines connected to unselected memory cells, that is not adjacent to a selected first signal line connected to a selected memory cell from among the multiple memory cells; applying a second voltage that is lower than the first voltage to a second line, from among the unselected first signal lines, that is adjacent to the selected first signal line; floating the unselected first signal lines; and applying a third voltage that is higher than the first voltage to the selected first signal line.
Abstract:
A high voltage switch circuit includes a first transistor, a first depletion mode transistor, a level shifter, a control signal generator, a second transistor and a second depletion mode transistor. The first transistor transmits the second driving voltage to an output terminal in response to a first gate signal. The first depletion mode transistor transmits the second driving voltage to the first transistor in response to feedback from the output terminal. The control signal generator generates first and second control signals in response to a level-shifted enable signal. The second transistor has a gate electrode connected to the first voltage and is turned on and off in response to the second control signal at a first end of the second transistor. The second depletion mode transistor is connected between a second end of the second transistor and the output terminal, and has a gate electrode receiving the first control signal.
Abstract:
A semiconductor package includes first through third memory chips. The first memory chip is arranged on a package substrate, the second memory chip is arranged on the first memory chip, and the third memory chip is arranged between the first memory chip and the second memory chip. Each of the first through third memory chips includes a memory cell array storing data, stress detectors, a stress index generator, and a control circuit. The stress detectors are formed and distributed in a substrate, and detect stacking stress in response to an external voltage to output a plurality of sensing currents. The stress index generator converts the plurality of sensing currents into stress index codes. The control circuit adjusts a value of a feature parameter associated with an operating voltage of a corresponding memory chip, based on at least a portion of the stress index codes.
Abstract:
A method of operating a resistive memory device including a plurality of memory cells comprises determining whether to perform a refresh operation on memory cells in a memory cell array; determining a resistance state of each of at least some of the memory cells; and performing a re-writing operation on a first memory cell having a resistance state from among a plurality of resistance states that is equal to or less than a critical resistance level.
Abstract:
A resistive memory device includes a memory cell array having a plurality of memory cells respectively connected to a plurality of first signal lines and a plurality of second signal lines crossing each other. A first write driver is configured to provide a write voltage to write data to the memory cells. A second write driver is configured to be disposed between the memory cell array and the first write driver and provide a write current generated based on the write voltage to a first signal line selected from among the plurality of first signal lines.