Abstract:
Read operations are performed in a multi-plane memory device. A state machine interfaces an external controller to each plane of memory cells to allow reading from selected word lines in the planes. In one approach, different types of read operations are performed in different planes, such as a multi-level cell read, e.g., a lower, middle or upper page read and a single-level cell (SLC) read. When the read operation in one plane uses fewer read voltages than another plane, the read data can be output early from the one plane while read operations continue on the other plane. The external controller can also command a cache release for one plane after outputting data from the caches of another plane. Read voltages can be set for each plane in a respective set of registers.
Abstract:
Apparatuses, systems, and methods are disclosed for three-dimensional non-volatile memory. A stack of word line layers includes word lines for a three-dimensional non-volatile memory array. A stack of word line layers may include a plurality of tiers. Word line switch transistors transfer word line bias voltages to the word lines. Word line contact regions couple word line switch transistors to word lines. A word line contact region includes a stepped structure for a tier of word line layers. A level region separates a word line contact region for a first tier from a word line contact region for a second tier.
Abstract:
Techniques are presented for the programming of a non-volatile memory in which multi-state memory cells use a charge trapping layer. When writing data onto a word lines, different data states are written individually, while programming inhibiting the other states, thereby breaking down the write operation into a number of sub-operations, one for each state to be written. This allows for improved timing and decreased power consumption.
Abstract:
Techniques are presented for the programming of a non-volatile memory in which multi-state memory cells use a charge trapping layer. When writing data onto a word lines, different data states are written individually, while programming inhibiting the other states, thereby breaking down the write operation into a number of sub-operations, one for each state to be written. This allows for improved timing and decreased power consumption.
Abstract:
Apparatuses, systems, methods, and computer program products are disclosed for reducing routing signals. An apparatus includes a first block decoder circuit that senses bad block data of a first latch circuit corresponding to a first memory block and couple the bad block data onto a bus. An apparatus includes a comparator circuit that compares the bad block data against a reference, sets a bad block flag, and routes the bad block flag on a routing line across an array of storage elements. An apparatus includes a second block decoder circuit that receives the bad block flag from the routing line, determines a condition of the first memory block based on the bad block flag, and determines a generation of a block selection signal for selecting a second memory block.
Abstract:
Apparatuses, systems, and methods are disclosed for three-dimensional non-volatile memory. A stack of word line layers includes word lines for a three-dimensional non-volatile memory array. A stack of word line layers may include a plurality of tiers. Word line switch transistors transfer word line bias voltages to the word lines. Word line contact regions couple word line switch transistors to word lines. A word line contact region includes a stepped structure for a tier of word line layers. A level region separates a word line contact region for a first tier from a word line contact region for a second tier.
Abstract:
Techniques are presented for the programming of a non-volatile memory in which multi-state memory cells use a charge trapping layer. When writing data onto a word lines, different data states are written individually, while programming inhibiting the other states, thereby breaking down the write operation into a number of sub-operations, one for each state to be written. This allows for improved timing and decreased power consumption.
Abstract:
This disclosure provides a method and apparatus for applying a dynamic strobe signal to a plurality of sense modules during programming of an array of memory cells, where a characteristic of the dynamic strobe signal is configured to limit a peak current level through the plurality of sense modules. An example apparatus the array of memory cells, a plurality of bit lines spanning the array of memory cells, and the plurality of sense modules connected to the bit lines. The plurality of sense modules enable sensing of states of memory cells. A controller determines the characteristic of the dynamic strobe signal, where the dynamic strobe signal is varied based on the determined characteristic.
Abstract:
When performing an erase on a flash type non-volatile memory with a NAND type of structure, techniques are presented for inhibiting erase on selected word lines, select lines of programmable select transistors, or some combination of these. The voltage along the selected control lines are initially ramped up by the level on a corresponding input line, but then have their voltage raised to an erase inhibit level by capacitive coupling with the well structure. The level of these input signals are ramped up with the erase voltage applied to the well structure, but with a delay based upon the coupling ratio between the control line and the well.
Abstract:
A memory device and associated techniques improve a settling time of bit lines in a memory device during a sensing operation, such as read or verify operation. Supply voltage from power supply terminals in the sense circuits is briefly toggled during a discharge of a selected bit line in response to a voltage on a selected word line being increased to a second word line level or higher. This helps to create an electrical path from the selected bit line through to a supply terminal for discharging the selected bit line such that a settling time of a voltage of the selected bit line is shortened in association with a target memory cell transitioning from a non-conductive state to a conductive state.