Abstract:
Generally spherical resin particles formed of a thermoplastic resin, having a sphericity of 0.90 to 1.00, a light scattering index of 0.5 to 1.0 and a linseed oil absorption of 30 to 150 mL/100 g.
Abstract:
Silica-including microcapsule resin particles including an outer shell constituted of a crosslinked polymer and a cavity partitioned with the outer shell, in which the silica-including microcapsule resin particles contain inside the cavity a porous structure in which silica particles are mutually connected, and have a volume average particle diameter of 0.5 to 100 μm.
Abstract:
Silica-including microcapsule resin particles including an outer shell constituted of a crosslinked polymer and a cavity partitioned with the outer shell, in which the silica-including microcapsule resin particles contain inside the cavity a porous structure in which silica particles are mutually connected, and have a volume average particle diameter of 0.5 to 100 μm.
Abstract:
A manufacturing method for porous resin microparticles comprising steps of: heating a polyester thermoplastic resin having biodegradability to a temperature of 80° C. or higher and 200° C. or lower in a glycol ether solvent to obtain a solution, and cooling the solution to precipitate the polyester thermoplastic resin as porous resin microparticles.
Abstract:
A manufacturing method for porous resin microparticles comprising steps of: heating a polyester thermoplastic resin having biodegradability to a temperature of 80° C. or higher and 200° C. or lower in a glycol ether solvent to obtain a solution, and cooling the solution to precipitate the polyester thermoplastic resin as porous resin microparticles.
Abstract:
Generally spherical resin particles formed of a thermoplastic resin, having a sphericity of 0.90 to 1.00, a light scattering index of 0.5 to 1.0 and a linseed oil absorption of 30 to 150 mL/100 g.
Abstract:
In a method for producing composite particles containing polymer particles and silica particles that adhere to the polymer particles, the composite particles are obtained by subjecting a polymerizable monomer to aqueous suspension polymerization in a presence of silica particles and a cellulose compound adsorbing onto the silica particles. The composite particles contain the polymer particles, the silica particles that adhere to surfaces of the polymer particles, and the water-soluble cellulose compound.
Abstract:
Polyester-based resin particles including a polyester-based resin as a base resin, in which the base resin exhibits a plurality of endothermic peaks corresponding to crystal melting temperatures by DSC measurement, at least one of the endothermic peaks exists in each region of a low temperature side region and a high temperature side region, a maximum endothermic peak of the low temperature side region and a maximum endothermic peak of the high temperature side region exhibit a crystal melting heat amount ratio (low temperature side crystal melting heat amount/high temperature side crystal melting heat amount) in a range of 0.1 to 1.5, and the polyester-based resin particles have a volume average particle diameter of 1 to 50 μm.
Abstract:
A high-recoverability resin particles having a mean particle size of 1 to 100 μm containing a crossdinked (meth)acrylic acid ester-based resin, wherein the high-recoverability resin particles have a recovery rate of 22% or greater, and a 30% compression strength of 1.5 to 5.0 kgf/mm2.
Abstract:
In a method for producing composite particles containing polymer particles and silica particles that adhere to the polymer particles, the composite particles are obtained by subjecting a polymerizable monomer to aqueous suspension polymerization in a presence of silica particles and a cellulose compound adsorbing onto the silica particles. The composite particles contain the polymer particles, the silica particles that adhere to surfaces of the polymer particles, and the water-soluble cellulose compound.