Abstract:
A method of manufacturing a light emitting device is provided in which satisfactory image display can be performed by the investigation and repair of short circuits in defect portions of light emitting elements. A backward direction electric current flows in the defect portions if a reverse bias voltage is applied to the light emitting elements having the defect portions. Emission of light which occurred from the backward direction electric current flow is measured by using an emission microscope, specifying the position of the defect portions, and short circuit locations can be repaired by irradiating a laser to the defect portions, turning them into insulators.
Abstract:
The present invention intends to realize a narrow frame of a system on panel. In addition to this, a system mounted on a panel is intended to make higher and more versatile in the functionality. In the invention, on a panel on which a pixel portion (including a liquid crystal element, a light-emitting element) and a driving circuit are formed, integrated circuits that have so far constituted an external circuit are laminated and formed. Specifically, of the pixel portion and the driving circuit on the panel, on a position that overlaps with the driving circuit, any one kind or a plurality of kinds of the integrated circuits is formed by laminating according to a transcription technique.
Abstract:
The present invention intends to realize a narrow flame of a system on panel. In addition to this, a system mounted on a panel is intended to make higher and more versatile in the functionality. In the invention, on a panel on which a pixel portion (including a liquid crystal element, a light-emitting element) and a driving circuit are formed, integrated circuits that have so far constituted an external circuit are laminated and formed. Specifically, of the pixel portion and the driving circuit on the panel, on a position that overlaps with the driving circuit, any one kind or a plurality of kinds of the integrated circuits is formed by laminating according to a transcription technique.
Abstract:
To reduce the thickness of a lighting device which uses an electroluminescent material and to simplify the structure of a lighting device which uses an electroluminescent material, in the lighting device of the present invention: a terminal electrically connecting a light-emitting element included in the lighting device to the outside is formed over the same surface of a substrate as the light-emitting element; and the terminal is formed at the center of the substrate while the light-emitting element is stacked. In addition, the lighting device has a structure in which the light-emitting element is not easily deteriorated.
Abstract:
A display system in which the luminance of light-emitting elements in a light-emitting device is adjusted based on information on an environment. A sensor obtains information on an environment as an electrical signal. A CPU converts, based on comparison data set in advance, the information signal into a correction signal for correcting the luminance of EL elements. Upon receiving this correction signal, a voltage changer applies a predetermined corrected potential to the EL elements. Thus, this display system enables control of the luminance of the EL elements.
Abstract:
The present invention intends to realize a narrow flame of a system on panel. In addition to this, a system mounted on a panel is intended to make higher and more versatile in the functionality. In the invention, on a panel on which a pixel portion (including a liquid crystal element, a light-emitting element) and a driving circuit are formed, integrated circuits that have so far constituted an external circuit are laminated and formed. Specifically, of the pixel portion and the driving circuit on the panel, on a position that overlaps with the driving circuit, any one kind or a plurality of kinds of the integrated circuits is formed by laminating according to a transcription technique.
Abstract:
A display system in which the luminance of light-emitting elements in a light-emitting device is adjusted based on information on an environment. A sensor obtains information on an environment as an electrical signal. A CPU converts, based on comparison data set in advance, the information signal into a correction signal for correcting the luminance of EL elements. Upon receiving this correction signal, a voltage changer applies a predetermined corrected potential to the EL elements. Thus, this display system enables control of the luminance of the EL elements.
Abstract:
A display system in which the luminance of light-emitting elements in a light-emitting device is adjusted based on information on an environment. A sensor obtains information on an environment as an electrical signal. A CPU converts, based on comparison data set in advance, the information signal into a correction signal for correcting the luminance of EL elements. Upon receiving this correction signal, a voltage changer applies a predetermined corrected potential to the EL elements. Thus, this display system enables control of the luminance of the EL elements.
Abstract:
A method of manufacturing a light emitting device is provided in which satisfactory image display can be performed by the investigation and repair of short circuits in defect portions of light emitting elements. A backward direction electric current flows in the defect portions if a reverse bias voltage is applied to the light emitting elements having the defect portions. Emission of light which occurred from the backward direction electric current flow is measured by using an emission microscope, specifying the position of the defect portions, and short circuit locations can be repaired by irradiating a laser to the defect portions, turning them into insulators.