Abstract:
In a display element such as an organic EL element, deterioration progresses due to light emission, and emission luminance is lowered even if the same voltage is applied to the display element. Therefore, use over time causes variations in luminance of each pixel, thereby a so-called “image burn-in” phenomenon occurs. Given this factor, the invention provides a display device which can reduce the difference in deterioration of a display element in each pixel and suppress variations in light emission of a display element in a pixel. It is prevented that only a specific pixel has a long accumulated lighting time. For that purpose, a gray scale of a display pattern is changed to prevent the difference in deterioration of display element in pixels from increasing. Alternatively, a specific display pattern is prevented from being fixedly displayed in a specific region. Further alternatively, a pixel lagging behind in deterioration is deteriorated so that the accumulated lighting time of pixels is equal to each other.
Abstract:
An organic EL display device of active matrix type wherein insulated-gate field effect transistors formed on a single-crystal semiconductor substrate are overlaid with an organic EL layer; characterized in that the single-crystal semiconductor substrate (413 in FIG. 4) is held in a vacant space (414) which is defined by a bed plate (401) and a cover plate (405) formed of an insulating material, and a packing material (404) for bonding the bed and cover plates; and that the vacant space (414) is filled with an inert gas and a drying agent, whereby the organic EL layer is prevented from oxidizing.
Abstract:
It is an object to provide a wireless chip which can increase a mechanical strength, and a wireless chip with a high durability. A wireless chip includes a transistor including a field-effect transistor, an antenna including a dielectric layer sandwiched between conductive layers, and a conductive layer connecting the chip and the antenna. Further, a wireless chip includes a transistor including a field-effect transistor, an antenna including a dielectric layer sandwiched between conductive layers, a sensor device, a conductive layer connecting the chip and the antenna, and a conductive layer connecting the chip and the sensor device. Moreover, a wireless chip includes a transistor including a field-effect transistor, an antenna including a dielectric layer sandwiched between conductive layers, a battery, a conductive layer connecting the chip and the antenna, and a conductive layer connecting the chip and the battery.
Abstract:
An object is to provide a semiconductor device including an oxide semiconductor in which miniaturization is achieved while favorable characteristics are maintained. The semiconductor includes an oxide semiconductor layer, a source electrode and a drain electrode in contact with the oxide semiconductor layer, a gate electrode overlapping with the oxide semiconductor layer, a gate insulating layer provided between the oxide semiconductor layer and the gate electrode, and an insulating layer provided in contact with the oxide semiconductor layer. A side surface of the oxide semiconductor layer is in contact with the source electrode or the drain electrode. An upper surface of the oxide semiconductor layer overlaps with the source electrode or the drain electrode with the insulating layer interposed between the oxide semiconductor layer and the source electrode or the drain electrode.
Abstract:
[Problem]A TFT is manufactured using at least five photomasks in a conventional liquid crystal display device, and therefore the manufacturing cost is high.[Solving Means]By performing the formation of the pixel electrode 127, the source region 123 and the drain region 124 by using three photomasks in three photolithography steps, a liquid crystal display device prepared with a pixel TFT portion, having a reverse stagger type n-channel TFT, and a storage capacitor can be realized.
Abstract:
A p channel TFT of a driving circuit has a single drain structure and its n channel TFT, a GOLD structure or an LDD structure. A pixel TFT has the LDD structure. A pixel electrode disposed in a pixel portion is connected to the pixel TFT through a hole bored in at least a protective insulation film formed of an inorganic insulating material and formed above a gate electrode of the pixel TFT, and in an interlayer insulating film disposed on the insulation film in close contact therewith. These process steps use 6 to 8 photo-masks.
Abstract:
A display device includes a first wiring functioning as a gate electrode formed over a substrate, a gate insulating film formed over the first wiring, a second wiring and an electrode layer provided over the gate insulating film, and a high-resistance oxide semiconductor layer formed between the second wiring and the electrode layer are included. In the structure, the second wiring is formed using a stack of a low-resistance oxide semiconductor layer and a conductive layer over the low-resistance oxide semiconductor layer, and the electrode layer is formed using a stack of the low-resistance oxide semiconductor layer and the conductive layer which is stacked so that a region functioning as a pixel electrode of the low-resistance oxide semiconductor layer is exposed.
Abstract:
A photoelectric conversion device with a novel anti-reflection structure. In the photoelectric conversion device, a front surface of a semiconductor substrate which serves as a light-receiving surface is covered with a group of whiskers (a group of nanowires) so that surface reflection is reduced. In other words, a semiconductor layer which has a front surface where crystals grow so that whiskers are formed is provided on the light-receiving surface side of the semiconductor substrate. The semiconductor layer has a given uneven structure, and thus has effects of reducing reflection on the front surface of the semiconductor substrate and increasing conversion efficiency.
Abstract:
A TFT is manufactured using at least five photomasks in a conventional liquid crystal display device, and therefore the manufacturing cost is high. By performing the formation of the pixel electrode 127, the source region 123 and the drain region 124 by using three photomasks in three photolithography steps, a liquid crystal display device prepared with a pixel TFT portion, having a reverse stagger type n-channel TFT, and a storage capacitor can be realized, FIG. 2.
Abstract:
A photoelectric conversion device with a novel anti-reflection structure. In the photoelectric conversion device, a front surface of a semiconductor substrate which serves as a light-receiving surface is covered with a group of whiskers (a group of nanowires) so that surface reflection is reduced. In other words, a semiconductor layer which has a front surface where crystals grow so that whiskers are formed is provided on the light-receiving surface side of the semiconductor substrate. The semiconductor layer has a given uneven structure, and thus has effects of reducing reflection on the front surface of the semiconductor substrate and increasing conversion efficiency.