Abstract:
A voltage converter includes a power supply circuit configured to generate an output voltage based on an input voltage in response to a control signal, and a power supply control circuit configured to generate the control signal based on a reference clock signal and the output voltage.
Abstract:
In an electronic device including a semiconductor memory, the semiconductor memory may include a unit storage cell including a variable resistor having a resistance value that is changed according to current flowing through both terminals of the variable resistor and a selection element that is electrically coupled to one terminal of the variable resistor, a unit current generation section that generates the current flowing through both terminals by using predetermined voltage according to a polarity of current data as compared with existing data, and a pad that receives the predetermined voltage from an exterior and allows the current flowing through both terminals to be measured from an exterior.
Abstract:
A current comparator may include a current comparison block configured to compare current flowing through first and second input terminals; a first current control unit configured to control current flowing through the first input terminal in response to a voltage of a first node; a second current control unit configured to control current flowing through the second input terminal in response to a voltage of a second node; a first driving unit configured to drive the first node with a first voltage higher than a read voltage in a non-comparison period, and drive the first node with the read voltage in a comparison period; and a second driving unit configured to drive the second node with a second voltage higher than a reference voltage in the non-comparison period, and drive the second node with the reference voltage in the comparison period.
Abstract:
A current comparator may include a current comparison block configured to compare current flowing through first and second input terminals; a first current control unit configured to control current flowing through the first input terminal in response to a voltage of a first node; a second current control unit configured to control current flowing through the second input terminal in response to a voltage of a second node; a first driving unit configured to drive the first node with a first voltage higher than a read voltage in a non-comparison period, and drive the first node with the read voltage in a comparison period; and a second driving unit configured to drive the second node with a second voltage higher than a reference voltage in the non-comparison period, and drive the second node with the reference voltage in the comparison period.
Abstract:
A delay locked loop includes a variable delay line circuit configured to delay a pulse selection circuit output to generate an output signal, a delay model circuit to delay the output signal to generate a first feedback signal, a first phase comparator circuit to control the variable delay line circuit according to the input signal and the first feedback signal, a pulse generation circuit to generate a pulse signal according to the input signal and the first feedback signal, a pulse retainer circuit to delay the output signal to generate a second feedback signal, a pulse selection circuit to select the pulse signal generated by the pulse generation circuit or the second feedback signal as the pulse selection circuit output during the tracking operation, and a second phase comparator circuit to control the variable delay line circuit according to the pulse selection circuit output and the output signal.
Abstract:
Provided is an electronic device including a power supply circuit. The power supply circuit includes: a voltage driving unit configured to pull-up drive an output node and generate an output voltage; and a driving control unit configured to receive the output voltage, disable the voltage driving unit from the time at which a divided voltage obtained by dividing the output voltage at a set ratio becomes higher than a first level, and enable the voltage driving unit from the time at which the divided voltage becomes lower than a second level, which is higher than the first level.
Abstract:
Provided is an electronic device including a power supply circuit. The power supply circuit includes: a voltage driving unit configured to pull-up drive an output node and generate an output voltage; and a driving control unit configured to receive the output voltage, disable the voltage driving unit from the time at which a divided voltage obtained by dividing the output voltage at a set ratio becomes higher than a first level, and enable the voltage driving unit from the time at which the divided voltage becomes lower than a second level, which is higher than the first level.
Abstract:
An electronic device including a semiconductor memory. The semiconductor memory includes a plurality of variable resistance elements; a plurality of read voltage application terminals configured to supply different levels of read voltages to respective one ends of the plurality of variable resistance elements; and an analog-to-digital conversion unit configured to generate multi-bit digital data corresponding to a total current which is acquired by summing currents flowing through the plurality of variable resistance elements.
Abstract:
Provided an electronic device including a semiconductor memory unit. The semiconductor memory unit includes: a plurality of storage cells each including a variable resistance element of which resistance is changed in response to a current flowing across the variable resistance element and a selecting element coupled to one end of the variable resistance element; a plurality of word lines corresponding to the respective storage cells and each coupled to a selecting element of a corresponding storage cell; a first line coupled to one ends of the plurality of storage cells; a second line coupled to the other ends of the plurality of storage cells; a voltage adjuster configured to adjust the voltage levels of back bias voltages of the selecting elements of the plurality of storage cells; and an access control unit electrically coupled to the first and second lines and passing an access current to a selected storage cell among the plurality of storage cells.
Abstract:
An electronic device including a semiconductor memory. The semiconductor memory includes a plurality of variable resistance elements; a plurality of read voltage application terminals configured to supply different levels of read voltages to respective one ends of the plurality of variable resistance elements; and an analog-to-digital conversion unit configured to generate multi-bit digital data corresponding to a total current which is acquired by summing currents flowing through the plurality of variable resistance elements.