Abstract:
Provided are a semiconductor package, a semiconductor device provided with the same, and a method of fabricating the same. The semiconductor package may include a package substrate including a central region and a peripheral region, a first semiconductor chip provided on the package substrate, a first connection pattern provided on the central region of the package substrate to connect the package substrate electrically to the first semiconductor chip, at least one second semiconductor chip provided on the peripheral region of the package substrate and between the package substrate and the first semiconductor chip, and a second connection pattern provided on the peripheral region of the package substrate to connect the first semiconductor chip electrically to the second semiconductor chip.
Abstract:
A semiconductor device includes a package substrate, a semiconductor chip on a first region of the package substrate, and a solder bump on a second region of the package substrate. The solder bump includes a core portion and a peripheral portion encapsulating the core portion. The peripheral portion includes a first segment with a first melting point and a second segment with a second melting point that is less than the first melting point.
Abstract:
A method of dividing a substrate includes preparing a substrate including a crystalline semiconductor layer having a scribe lane region and device regions, a dielectric layer on the crystalline semiconductor layer, and a partition structure in physical contact with the dielectric layer and provided on the scribe lane region of the crystalline semiconductor layer, forming an amorphous region in the crystalline semiconductor layer, and performing a grinding process on the crystalline semiconductor layer after the forming of the amorphous region. The amorphous region is formed in the scribe lane region of the crystalline semiconductor layer.
Abstract:
A semiconductor package that includes a package substrate, a lower semiconductor chip mounted on the package substrate, and an upper semiconductor chip stacked on the lower semiconductor chip in a cascade shape is provided. An active surface of the lower semiconductor chip is facing an active surface of the upper semiconductor chip.
Abstract:
A method of dividing a substrate includes preparing a substrate including a crystalline semiconductor layer having a scribe lane region and device regions, a dielectric layer on the crystalline semiconductor layer, and a partition structure in physical contact with the dielectric layer and provided on the scribe lane region of the crystalline semiconductor layer, forming an amorphous region in the crystalline semiconductor layer, and performing a grinding process on the crystalline semiconductor layer after the forming of the amorphous region. The amorphous region is formed in the scribe lane region of the crystalline semiconductor layer.
Abstract:
Provided is a semiconductor device including an interconnection structure provided on a cell region of a substrate to include a first line and a second line sequentially stacked on the substrate, and a defect detection structure provided on a peripheral region of the substrate to include first and second defect detection lines provided at the same levels as those of the first and second lines, respectively.
Abstract:
Provided is a semiconductor device including an interconnection structure provided on a cell region of a substrate to include a first line and a second line sequentially stacked on the substrate, and a defect detection structure provided on a peripheral region of the substrate to include first and second defect detection lines provided at the same levels as those of the first and second lines, respectively.