摘要:
A semiconductor memory device includes a memory cell array in which a plurality of memory cells are arranged. The semiconductor memory device includes an error correcting code (ECC) circuit configured to generate parity data based on main data, write a codeword including the main data and the parity data in the memory cell array, read the codeword from a selected memory cell row to generate syndromes, and correct errors in the read codeword on a per symbol basis based on the syndromes. The main data includes first data of a first memory cell of the selected memory cell row and second data of a second memory cell of the selected memory cell row. The first data and the second data are assigned to one symbol of a plurality of symbols, and the first memory cell and the second memory cell are adjacent to each other in the memory cell array.
摘要:
Provided are an anti-fuse, an anti-fuse circuit, and a method of fabricating the anti-fuse. The anti-fuse includes a semiconductor substrate, an isolation region, a channel diffusion region, a gate oxide layer, and a gate electrode. The semiconductor substrate includes a top surface and a bottom portion, the bottom portion of the semiconductor substrate having a first conductivity type. The isolation region is disposed inward from the top surface of the semiconductor substrate to a first depth. The channel diffusion region is disposed inward from the top surface of the semiconductor substrate to a second depth, the second depth located at a depth where the channel diffusion region meets an upper boundary of the bottom portion of the semiconductor substrate. The channel diffusion region is surrounded by the isolation region, the first depth is a greater distance from the top surface of the semiconductor substrate than the second depth, and the channel diffusion region has a second conductivity type opposite to the first conductivity type. The gate oxide layer is disposed on the channel diffusion region, and the gate electrode is disposed on the gate oxide layer to cover a top surface of the gate oxide layer.
摘要:
Provided are an anti-fuse, an anti-fuse circuit, and a method of fabricating the anti-fuse. The anti-fuse includes a semiconductor substrate, an isolation region, a channel diffusion region, a gate oxide layer, and a gate electrode. The semiconductor substrate includes a top surface and a bottom portion, the bottom portion of the semiconductor substrate having a first conductivity type. The isolation region is disposed inward from the top surface of the semiconductor substrate to a first depth. The channel diffusion region is disposed inward from the top surface of the semiconductor substrate to a second depth, the second depth located at a depth where the channel diffusion region meets an upper boundary of the bottom portion of the semiconductor substrate. The channel diffusion region is surrounded by the isolation region, the first depth is a greater distance from the top surface of the semiconductor substrate than the second depth, and the channel diffusion region has a second conductivity type opposite to the first conductivity type. The gate oxide layer is disposed on the channel diffusion region, and the gate electrode is disposed on the gate oxide layer to cover a top surface of the gate oxide layer.
摘要:
A fuse circuit includes a program unit, a sensing unit and a control unit. The program unit is programmed in response to a program signal, and outputs a program output signal in response to a sensing enable signal. The sensing unit includes a variable resistor unit that has a resistance that varies based on a control signal, and generates a sensing output signal based on the resistance of the variable resistor unit and the program output signal. The control unit generates the control signal having a value changed depending on operation modes, and performs a verification operation with respect to the program unit based on the sensing output signal to generate a verification result. The program unit may be re-programmed based on the verification result.
摘要:
A memory cell includes a selection transistor on a substrate and an antifuse on the substrate. The selection transistor includes a first gate connected to a read word line, a first gate insulation layer that insulates the first gate from the substrate, a first source region connected to a bit line, and a first drain region, an impurity concentration of the first drain region being lower than an impurity concentration of the first source region. The antifuse includes a first electrode connected to a program word line and a second electrode connected to the selection transistor.
摘要:
A fuse circuit includes a program unit and a sensing unit. The program unit is programmed in response to a program signal and outputs a program output signal in response to a sensing enable signal. The sensing unit outputs a sensing output signal based on the program output signal and the sensing output signal indicates whether the program unit is programmed or not. The program unit includes an anti-fuse cell, a selection transistor, a program transistor and a sensing transistor. The anti-fuse cell includes at least two anti-fuse elements which are connected in parallel and are respectively broken down at different levels of a program voltage.
摘要:
A fuse circuit includes a program unit and a sensing unit. The program unit is programmed in response to a program signal and outputs a program output signal in response to a sensing enable signal. The sensing unit outputs a sensing output signal based on the program output signal and the sensing output signal indicates whether the program unit is programmed or not. The program unit includes an anti-fuse cell, a selection transistor, a program transistor and a sensing transistor. The anti-fuse cell includes at least two anti-fuse elements which are connected in parallel and are respectively broken down at different levels of a program voltage.
摘要:
A memory cell includes a selection transistor on a substrate and an antifuse on the substrate. The selection transistor includes a first gate connected to a read word line, a first gate insulation layer that insulates the first gate from the substrate, a first source region connected to a bit line, and a first drain region, an impurity concentration of the first drain region being lower than an impurity concentration of the first source region. The antifuse includes a first electrode connected to a program word line and a second electrode connected to the selection transistor.
摘要:
Provided are a circuit and method for sampling a valid command using a valid address window extended for a high-speed operation in a double pumped address scheme memory device. A method for extending the valid address window includes: inputting a valid command signal and a first address signal at the first cycle of a clock signal; inputting a second address signal at the second cycle of the clock signal; generating a decoded command signal and extended first and second internal address signals respectively in response to the command signal and the address signals; and latching and decoding the extended first and second internal address signals in response to the decoded command signal.
摘要:
Semiconductor devices, a system including said semiconductor devices and methods thereof are provided. An example semiconductor device may receive data scheduled for transmission, scramble an order of bits within the received data, the scrambled order arranged in accordance with a given pseudo-random sequence. The received data may be balanced such that a difference between a first number of the bits within the received data equal to a first logic level and a second number of bits within the received data equal to a second logic level is below a threshold. The balanced and scrambled received data may then be transmitted. The example semiconductor device may perform the scrambling and balancing operations in any order. Likewise, on a receiving end, another semiconductor device may decode the original data by unscrambling and unbalancing the transmitted data. The unscrambling and unbalancing operations may be performed in an order based upon the order in which the transmitted data is scrambled and balanced.