摘要:
An embodiment of the present invention relates to a method for treating spent caustic soda generated from an oil refinery process, a petrochemical process, etc. through a process in which a series of treatment steps are integrated, wherein the method can constitute a process under mild conditions excluding high temperature and/or high pressure conditions and can be advantageous to a post treatment process since the amount of by-products is small.
摘要:
Disclosed herein is a method of simultaneously removing sulfur and mercury from a hydrocarbon material, including: hydrotreating the hydrocarbon material containing sulfur and mercury in the presence of a catalyst including a metal supported with a carrier to convert sulfur into hydrogen sulfide, and adsorb mercury on a metal active site or a carrier of the catalyst in the form of mercury sulfide.
摘要:
This invention relates to a method of producing aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood, including partially saturating and hydrocracking the oils derived from oil in a hydrogenation and reaction area, separating them depending on the number of carbons, recirculating heavy oils having 11 or more carbons to the hydrogenation and reaction area, feeding oils suitable for producing BTX to an aromatic separation process and a transalkylation process to recover aromatics, and feeding hydrocarbonaceous components having 5 or fewer carbons to a light separation process, thus obtaining light paraffins.
摘要:
Disclosed herein is a catalyst, including, in one example: a carrier, a polymer electrolyte multilayer film formed on the carrier, and metal particles dispersed in the polymer electrolyte multilayer film. The catalyst can be easily prepared, and can be used to produce hydrogen peroxide in high yield in the presence of a reaction solvent including no acid promoter.
摘要:
Disclosed are a molecular sieve catalyst and a preparation method thereof to produce light olefins from cracking naphtha catalytically in severe environments of high temperature and high moisture. In detail, the catalyst is prepared by spray-drying and calcining the mixed slurry, in which 0.01˜5.0 wt % of MnO2 and 1˜15 wt % of P2O5 are simultaneously imbedded in catalyst which consists of zeolite, clay and inorganic complex. According to the present invention, the method that manganese and phosphate are imbedded simultaneously in zeolite and inorganic complex is used to increases thermal-stability of obtained spherical catalyst, and increase olefin yield of cracking hydrocarbon such as naphtha by protecting acid-site of zeolite. To synthesize the required catalyst, the important procedures are mixing ratio and mixing sequence of Mn, P, zeolite, and inorganic complex.
摘要翻译:公开了一种分子筛催化剂及其制备方法,用于在严酷的高温高湿环境下催化裂解石脑油。 详细地,通过喷雾干燥和煅烧混合浆料制备催化剂,其中0.01〜5.0wt%的MnO 2和1〜15wt%的P 2 O 5同时嵌入由沸石,粘土和无机络合物组成的催化剂中。 根据本发明,使用锰和磷酸盐同时嵌入沸石和无机络合物的方法来提高所得球形催化剂的热稳定性,并通过保护沸石的酸性位点来提高裂解烃如石脑油的烯烃产率。 为了合成所需的催化剂,重要的步骤是Mn,P,沸石和无机络合物的混合比和混合顺序。
摘要:
The present invention relates to a hydroprocessing catalyst comprising: (i) one or more hydrogenation metal components selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal; and (ii) an organic compound expressed by the following chemical formula 1 or an organometallic compound expressed by the following chemical formula 2. Chemical formula 1: R1COCH2COR2 (wherein, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy). Chemical formula 2: X(R1COCH1COR2)n (wherein, X is selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy, and n is an integer of 1 to 6).
摘要:
This invention relates to a method of preparing a multicomponent bismuth molybdate catalyst by changing the pH of a coprecipitation solution upon coprecipitation and a method of preparing 1,3-butadiene using the catalyst. The multicomponent bismuth molybdate catalyst, coprecipitated using a solution having an adjusted pH, the preparation method thereof, and the method of preparing 1,3-butadiene through oxidative dehydrogenation using a C4 mixture including n-butene and n-butane as a reactant are provided. The C4 raffinate, containing many impurities, is directly used as a reactant without an additional process for separating n-butane or extracting n-butene, thus obtaining 1,3-butadiene at high yield. The activity of the multicomponent bismuth molybdate catalyst can be simply increased through precise pH adjustment upon coprecipitation, which is not disclosed in the conventional techniques. This method can be applied to the increase in the activity of multicomponent bismuth molybdate catalysts reported in the art.
摘要:
This invention relates to a petroleum refining method for producing high value-added clean petroleum products and aromatics (Benzene/Toluene/Xylene) together, by which low pollution petroleum products including liquefied petroleum gas or low-sulfur gas oil and aromatics can be efficiently produced together from a fluid catalytic cracked oil fraction.
摘要:
The present invention relates to a method of producing aromatic products (benzene/toluene/xylene) and olefin products from petroleum fractions obtained by fluid catalytic cracking, and, more particularly, to a method of producing products comprising high-concentration aromatic products and high value-added light olefin products from light cycle oil obtained by fluid catalytic cracking.
摘要:
Disclosed herein is a method of regenerating a titanium-containing molecular sieve catalyst. Particularly, this invention provides a method of regenerating a titanium-containing molecular sieve catalyst used in epoxidation of olefin through simple treatment using a mixture solvent comprising aqueous hydrogen peroxide and alcohol. According to the method of this invention, when the catalyst having decreased activity is regenerated, the activity of the regenerated catalyst is equal to that of new catalyst and can be maintained stable for a long period of time.