摘要:
When etching a silicon layer 210 with a processing gas containing a mixed gas constituted of HBr gas, and O2 gas and SiF4 gas and further mixed with both of or either of SF6 gas and NF3 gas by using a pre-patterned mask having a silicon oxide film layer 204 inside an airtight processing container 102, high-frequency power with a first frequency is applied from a first high-frequency source 118 and high-frequency power with a second frequency lower than the first frequency is applied from a second high-frequency source 138 to a lower electrode 104 on which a workpiece is placed. Through this etching process, holes or grooves achieving a high aspect ratio are formed in a desirable shape at the silicon layer.
摘要:
A Si etching method etches a Si wafer held on a susceptor placed in a processing vessel by a plasma-assisted etching process. A mixed etching gas prepared by mixing fluorosulfur gas, such as SF6 gas, or fluorocarbon gas, O2 gas and fluorosilicon gas, such as SiF4 gas is supplied into the processing vessel. RF power of 40 MHz or above is applied to the mixed etching gas to generate a plasma. The Si wafer is etched with radicals and ions contained in the plasma.
摘要:
To provide an electrocatalyst for fuel cells, which is configured to ensure both the initial performance and durability of fuel cells. An electrocatalyst for fuel cells, wherein the electrocatalyst comprises a carbon support including a mesopore and a catalyst alloy supported on the carbon support, and the catalyst alloy is a catalyst alloy of platinum and a transition metal; wherein the mesopore includes at least one throat; wherein an average effective diameter of the at least one throat is 1.8 nm or more and less than 3.2 nm; and wherein a transition metal ratio of the catalyst alloy supported on a deeper-side region than the at least one throat, is lower than the transition metal ratio of the catalyst alloy supported on a nearer-side region than the at least one throat.
摘要:
An aluminum alloy foil for an electrode current collectors has a high post-drying strength after application of an active material while keeping a high electrical conductivity. The aluminum alloy foil includes 0.1 to 1.0 mass % of Fe, 0.01 to 0.5% of Si, and 0.01 to 0.2 mass % of Cu, and the rest includes Al and unavoidable impurities. The aluminum alloy foil after final cold rolling has a tensile strength of 220 MPa or higher, a 0.2% yield strength of 180 MPa or higher, and an electrical conductivity of 58% IACS or higher. The aluminum alloy foil has a tensile strength of 190 MPa or higher and a 0.2% yield strength of 160 MPa or higher after the aluminum alloy foil is heat treated at any of 120° C. for 24 hours, 140° C. for 3 hours, and 160° C. for 15 minutes.
摘要:
In a gear spindle, outer cylinder gear sections (11) are each integrally formed on an inner peripheral surface of a spindle outer cylinder and inner cylinder gear sections (14) are each integrally formed on an outer peripheral surface of a spindle inner cylinder (13). An oil seal (27) that seals in the lubricating oil (20) for each of the aforementioned gear sections includes, a seal body (29) having a channel-shaped cross section and interposed in the peripheral gap between the inner peripheral surface of the spindle outer cylinder and the outer peripheral surface of the spindle inner cylinder (13), and a seal mounting member (30) that includes a band, a spring, or the like that tightens and fixes the seal body to the outer peripheral surface of the spindle inner cylinder (13) to allow expansion of the seal body in the axial direction in the aforementioned peripheral gap.
摘要:
A press-forming mold has a protective film for preventing seizing during press-forming formed on at least a forming surface that comes into contact with a formed body. The protective film is formed by PVD. An arbitrary selection section extracted from the surface of the protective film is divided into a plurality of individual sections; and, when the gradient of the surface at the nth division point is represented by (dZn/dXn), taking N to represent the number of divisions, the root-mean-square RΔq calculated by the following numerical expression is no greater than 0.032. R Δ q = 1 N ∑ n = 1 N ( d Z n d X n ) 2 It is thereby possible to improve the seizing resistance of a press-forming mold having a protective film formed by PVD.
摘要:
A method for quenching a steel pipe by water cooling from an outer surface thereof, where pipe end portions are not subjected to water cooling, and at least part of a main body other than the pipe end portions is subjected to water cooling. A region(s) that is not subjected to direct water cooling over an entire circumference thereof can be along an axial direction at least in part of the main body other than the pipe end portions. The start and stop of water cooling can be intermittent at least in part of the quenching. During the water cooling of the pipe outer surface, an intensified water cooling can be performed in a temperature range in which the pipe outer surface temperature is higher than Ms point. Thereafter, the cooling can be switched to moderate cooling so that the outer surface is cooled down to Ms point or lower.
摘要:
In a transparent electroconductive film including a transparent substrate and a transparent electroconductive oxide layer disposed on the transparent substrate, when the transparent electroconductive oxide layer is composed of zinc oxide, the surface resistivity of the transparent electroconductive oxide layer increases with time and thus it has been difficult to obtain a transparent electroconductive film stable against an environmental variation. Consequently, hard carbon films are provided on the surfaces of a transparent electroconductive oxide layer including at least one layer and containing zinc oxide as a main component in “the order of transparent substrate-hard carbon film-transparent electroconductive oxide layer-hard carbon film” or “the order of hard carbon film-transparent substrate-transparent electroconductive oxide layer-hard carbon film”. Alternatively, an organosilicon compound covering layer is provided on a surface of the transparent electroconductive oxide layer. Thereby, the water contact angle can be 75 degrees or more, and an increase in the resistivity of the transparent electroconductive oxide layer can be suppressed.
摘要:
An arc evaporation source having fast film-forming speed includes: at least one circumference magnet surrounding the circumference of a target, wherein the magnetization direction of the magnet runs orthogonal to the target surface; a non-ring shaped first permanent magnet on the target's rear surface side has a polarity in the same direction as the circumference magnet, and is arranged so that its magnetization direction runs orthogonal to the target's surface; a non-ring shaped second permanent magnet arranged either on the rear surface side of the first permanent magnet or between the first permanent magnet and the target, so as to leave a gap from the first permanent magnet, has a polarity in the same direction as the circumference magnet, and is arranged so that its magnetization direction runs orthogonal to the surface of the target; and a magnetic body between the first permanent magnet and the second permanent magnet.
摘要:
Provided is an arc evaporation source wherein film-forming speed is increased by inducing magnetic lines in the substrate direction. The arc evaporation source is provided with: at least one outer circumferential magnet (3), which is disposed such that the outer circumferential magnet surrounds the outer circumference of a target (2) and that the magnetization direction thereof is in the direction orthogonally intersecting the surface of the target (2); and a rear surface magnet (4) disposed on the rear surface side of the target (2). The rear surface magnet (4) has a non-ring-shaped first permanent magnet (4A) wherein the polarity thereof faces the same direction as the polarity of the outer circumferential magnet (3) and the magnetization direction of the rear surface magnet (4) is in the direction orthogonally intersecting the surface of the target (2).