Abstract:
An electron emission display including an electron emission substrate having at least one electron emission device formed thereon and an image forming substrate spaced apart from the electron emission substrate. The image forming substrate includes an effective region where electrons emitted from the electron emission device collide with the effective region to form images and a black region surrounding the effective region. The effective region includes a fluorescent layer formed in an arbitrary pattern and a metal layer formed on the fluorescent layer. The metal layer has a structure extending onto at least a portion of the black region.
Abstract:
Disclosed herein are an adhesive sheet comprising a cured acrylic polymer, hollow polymeric microspheres dispersed and ruptured in the cured acrylic polymer, and hollow parts formed by rupturing the hollow polymeric microspheres dispersed in the cured acrylic polymer, and a preparation method thereof.
Abstract:
The present invention relates to nucleic acid probes which are derived from rRNA genes of non-virus organisms and are useful for the detection of said non-virus infectious organisms in a biological sample. In addition, the present invention relates to compositions and chips useful for the diagnosis of one or more types of infectious diseases comprising said nucleic acid probes.
Abstract:
Embodiments of methods and apparatus for compensating writing power in an optical disc device can compensate selected (e.g., OPC) writing power. When a writing operation is temporarily suspended (e.g., buffer under-run) during the writing operation, writing power is compensated in real time on the basis of the β value detected from read RF signals for most recently recorded data and comparisons to selected writing power (e.g., optimum β value stored therein through OPC).
Abstract:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.
Abstract:
Disclosed is an electron emission device and an electron emission display using the same, wherein the electron emission device has an improved structure for focusing an electron beam. The electron emission device comprises: first and second electrodes formed on a plate and spaced from each other by a predetermined distance; an insulator formed on the entire area of the plate and formed with an opening through which a portion of the first electrode between the first and second electrodes is at least partially exposed; an electron emitter formed on a predetermined region of the first electrode and exposed through the opening; and a third electrode formed on the insulator and connected to the second electrode, wherein a voltage difference between the first and second electrodes causes the electron emitter to emit an electron and the emitted electron is focused by the third electrode.
Abstract:
Disclosed are a vertical GaN light emitting diode and a method for manufacturing the same. The vertical GaN light emitting diode comprises a first conductive GaN clad layer with an upper surface provided with a first contact formed thereon, an active layer formed on a lower surface of the first conductive GaN clad layer, a second conductive GaN clad layer formed on a lower surface of the active layer, a conductive adhesive layer formed on the second conductive GaN clad layer, and a conductive substrate, with a lower surface provided with a second contact formed thereon, formed on a lower surface of the conductive adhesive layer. The method for manufacturing the vertical GaN light emitting diodes comprises the step of removing the sapphire substrate from the light emitting structure so as to prevent the damages on a GaN single crystal plane of the structure.
Abstract:
Provided are an electrode additive coated with a coating material made of electrically conductive materials such as metal hydroxides, metal oxides or metal carbonates, and an electrode and a lithium secondary battery comprising the same. The electrode additive in accordance with the present invention can improve high temperature storage characteristics of the battery, without deterioration of performance thereof.
Abstract:
Disclosed are a vertical GaN light emitting diode and a method for manufacturing the same. The vertical GaN light emitting diode comprises a first conductive GaN clad layer with an upper surface provided with a first contact formed thereon, an active layer formed on a lower surface of the first conductive GaN clad layer, a second conductive GaN clad layer formed on a lower surface of the active layer, a conductive adhesive layer formed on the second conductive GaN clad layer, and a conductive substrate, with a lower surface provided with a second contact formed thereon, formed on a lower surface of the conductive adhesive layer. The method for manufacturing the vertical GaN light emitting diodes comprises the step of removing the sapphire substrate from the light emitting structure so as to prevent the damages on a GaN single crystal plane of the structure.
Abstract:
Disclosed is a liquid crystal display panel, a method for driving the same, and a liquid crystal display apparatus using the same which can improve visibility and transmittance in a multi-domain VA mode. The liquid crystal display panel includes a plurality of sub-pixels each having first and second gray scale regions which are split up and down and have different areas, the first and second gray scale regions of one sub-pixel having a staggered arrangement with respect to those of an adjacent sub-pixel; a plurality of thin film transistors for independently driving the first and second gray scale regions; a plurality of data lines connected to the thin film transistors, for generating first and second data signals to be respectively supplied to the first and second gray scale regions; and a plurality of gate lines for driving the plurality of thin film transistors by a horizontal period unit. The thin film transistors are connected to the first and second gray scale regions so that the first gray scale regions are driven when one of the plurality of gate lines is driven and the second gray scale regions are driven when another gate line is driven.