摘要:
Disclosed are a white light emitting diode and a method for manufacturing the white light emitting diode. The white light emitting diode comprises a conductive substrate with a light transmitting property having a surface divided into first and second areas; a first emitting unit including a first clad layer, a first active area, and a second clad layer at the first area of the conductive substrate; a second emitting unit including a third clad layer, a second active area emitting light with a wavelength to be combined with light emitted from the first active area into white light, and a fourth clad layer at the second area of the conductive substrate; and first, second and third electrodes, the first electrode connected to the second surface of the conductive substrate, the second electrode connected to the second clad layer, and the third electrode connected to the fourth clad layer.
摘要:
Disclosed are a vertical GaN light emitting diode and a method for manufacturing the same. The vertical GaN light emitting diode comprises a first conductive GaN clad layer with an upper surface provided with a first contact formed thereon, an active layer formed on a lower surface of the first conductive GaN clad layer, a second conductive GaN clad layer formed on a lower surface of the active layer, a conductive adhesive layer formed on the second conductive GaN clad layer, and a conductive substrate, with a lower surface provided with a second contact formed thereon, formed on a lower surface of the conductive adhesive layer. The method for manufacturing the vertical GaN light emitting diodes comprises the step of removing the sapphire substrate from the light emitting structure so as to prevent the damages on a GaN single crystal plane of the structure.
摘要:
Disclosed are a vertical GaN light emitting diode and a method for manufacturing the same. The vertical GaN light emitting diode comprises a first conductive GaN clad layer with an upper surface provided with a first contact formed thereon, an active layer formed on a lower surface of the first conductive GaN clad layer, a second conductive GaN clad layer formed on a lower surface of the active layer, a conductive adhesive layer formed on the second conductive GaN clad layer, and a conductive substrate, with a lower surface provided with a second contact formed thereon, formed on a lower surface of the conductive adhesive layer. The method for manufacturing the vertical GaN light emitting diodes comprises the step of removing the sapphire substrate from the light emitting structure so as to prevent the damages on a GaN single crystal plane of the structure.
摘要:
A high power flip chip LED has an n-doped semiconductor layer formed on the sapphire substrate, with a plurality of first regions and a second region of intersecting lines for separating the first regions from each other. P-doped semiconductor layers are on the first regions of the n-doped semiconductor layer to form mesa structures. At least one pair of diagonal corners of the respective mesa structures are rounded inward to form first basins between adjacent inward-rounded corners. First metal layers are on the mesa structures in a same configuration. A second metal layer is on the second region of the n-doped semiconductor layer. First ohmic contacts are on the first metal layers. Second ohmic contacts are on the second metal layer in the first basins. The LED can prevent the current channeling to increase the luminous area while equalizing the current density area thereby generating high brightness light.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
The present invention relates to an LED lens, in which a planar bottom has a pair of halves symmetrically connected with each other about a reference line and narrowed in the vicinity of the reference line. A pair of substantially semicircular reflecting surfaces are extended from both edges of the bottom connected with both ends of the reference line. A radiating surface is connected with remaining edges of the bottom and semicircular edges of the reflecting surfaces. The reflecting surfaces reflect light beams are introduced from the LED chip through the bottom toward the radiating surface. The radiating surface radiates the light beams to the outside when the light beams are introduced to the radiating surface through reflection from the reflecting surfaces and directly through the bottom, so that the light beams are radiated to the outside in a predetermined beam angle.
摘要:
Disclosed herein is a method of manufacturing a gallium nitride-based (AlxInyGa(1-x-y)N, where 0≦x≦1, 0≦y≦1, 0≦x+y≦1) single crystal substrate. The method comprises the steps of preparing a ZnO substrate, primarily growing a gallium nitride-based single crystal layer, and secondarily growing an additional gallium nitride-based single crystal layer on the primarily grown gallium nitride-based single crystal layer while removing the ZnO substrate by etching the underside of the ZnO substrate.
摘要翻译:本文公开了一种制造氮化镓基(Al x In y Ga(1-xy)N)的方法,其中0 <= x <=1,0,0≤y≤1,0<= x + y <= 1)单晶 基质。 该方法包括以下步骤:制备ZnO衬底,主要生长氮化镓基单晶层,然后在主要生长的氮化镓基单晶层上再次生长附加的氮化镓基单晶层,同时去除ZnO衬底 通过蚀刻ZnO衬底的下侧。
摘要:
The invention relates to an LED package frame and an LED package incorporating the same. The LED package frame comprises an LED chip; and a heat conductive member made of a lump of high heat conductivity material. The heat conductive member has a receiving part at a lateral portion, and is mounted with the LED chip. A lead is inserted at one end into the receiving part of the heat conductive member, and electrically connected to the LED chip. An electrically insulating layer is placed in tight contact between the lead and the receiving part of the heat conductive member to separate the lead from the receiving part. With the lead inserted into the heat conductive member, it is possible to reduce size while maintaining high heat conductivity and stability. Also, it is possible to provide an LED package frame and a high power LED package by fixing the lead fixed to the heat conductive member without a jig.
摘要:
The present invention relates to a multi-lens LED. The LED has multiple lenses and an intermediate layer interposed between the multiple lenses in order to radiate light emitted from an LED chip in a desired direction and/or beam angle without using a complicated lens configuration. The first lens is centered behind the LED chip when seen in the propagation direction of light, the second lens has a concave structure and surrounds the first lens, and the intermediate layer is interposed between the first and second lenses, so that light emitted from the LED chip can be radiated in a wide beam angle. When provided in the form of a hemisphere, the multi-lens LED can be attached to a wall or a ceiling in use for interior lighting. On the other hand, when provided in the form of a cylinder, the multi-lens LED of the invention can be applied in arrays to be used as a light source of an LCD backlight apparatus.