摘要:
Normal column selection signal switching device (20) is provided to switch a signal outputted from normal column selection signal generating device (19) in response to a test-mode signal (TMC1). Even if the normal column selection signal generating device (19) outputs a signal to disable a normal column decoder (3), the normal column selection signal switching device (20) switches the signal to enable the normal column decoder (3) to operate in the test operation. Having this configuration, a semiconductor memory device enables writing of data into all the normal memory cells even after some of the normal memory cells are replaced by spare memory cells.
摘要:
A high strength and high toughness cast steel material of the invention has a composition comprising 0.10 to 0.20% by mass of C, 0.10 to 0.50% by mass of Si, 0.40 to 1.20% by mass of Mn, 2.00 to 3.00% by mass of Ni, 0.20 to 0.70% by mass of Cr, and 0.10 to 0.50% by mass of Mo, and further comprising Fe and unavoidable impurities. The high strength and high toughness cast steel material of the invention is produced by subjecting an ingot having the above composition to annealing at 1,000 to 1,100° C., quenching at 850 to 950° C., tempering at 610 to 670° C., and then, if desired, stress-relief annealing at less than 610° C.
摘要:
Provided are a silver-white copper alloy which has superior mechanical properties such as hot workability, cold workability, or press property, color fastness, bactericidal and antibacterial properties, and Ni allergy resistance; and a method of producing such a silver-white copper alloy. The silver-white copper alloy includes 51.0 mass % to 58.0 mass % of Cu; 9.0 mass % to 12.5 mass % of Ni; 0.0003 mass % to 0.010 mass % of C; 0.0005 mass % to 0.030 mass % of Pb; and the balance of Zn and inevitable impurities, in which a relationship of 65.5≦[Cu]+1.2×[Ni]≦70.0 is satisfied between a content of Cu [Cu] (mass %) and a content of Ni [Ni] (mass %). In a metal structure thereof, an area ratio of β phases dispersed in an α-phase matrix is 0% to 0.9%.
摘要:
The present invention relates to a high-strength copper alloy forging material having properties of high hardness, high strength and high thermal conductivity.The high-strength copper alloy forging material contains, in mass %, 3 to 7.2% of Ni, 0.7 to 1.8% of Si, 0.02 to 0.35% of Zr and 0.002 to 0.05% of P, and further contains 1.5% or less of one or two or more of Cr, Mn and Zn in total, as needed, whereby appropriate amounts of Zr and P act to cause cracks to be less likely to occur in the material during working or heat treatment. After the working and the heat treatment, the forging material of the invention can have properties of high hardness, high strength and high thermal conductivity, and can be suitably used for resin injection mold materials, aircraft components and the like.
摘要:
A semiconductor device of the present invention comprises a substrate and a first semiconductor element. The substrate comprises an inner layer conductor and a cavity comprising the bottom surface on which a part of the inner layer conductor is exposed. The first semiconductor element contacts, in the cavity, the inner layer conductor directly or via a good heat conductor material.
摘要:
The present invention provides a film for a solar cell back sheet including: a substrate film; a white layer on at least one surface of the substrate film; and an adhesive protective layer, the white layer being formed by applying an aqueous composition for the white layer including a white pigment, a first aqueous binder and an inorganic oxide filler to at least one surface of the substrate film, and the adhesive protective layer being formed by applying an aqueous composition for the adhesive protective layer including a second aqueous binder, and which has excellent production efficiency, a white pigment uniformly present in the layers, and excellent adhesiveness between the respective layers, and a producing method of the film for a solar cell back sheet.
摘要:
Disclosed are: a ligand for an asymmetric synthesis catalyst; and a process for producing an α-alkenyl cyclic compound using the ligand. Specifically disclosed are: a ligand for an asymmetric synthesis catalyst, which is represented by any one of formulae (1) to (4) [wherein R1 represents —Cl or —Br; R2 represents —CH3 or —CF3; and R3 represents —CH2—CH═CH2 or —H]; and a process for producing an α-alkenyl cyclic compound using the ligand.
摘要:
An end face of an intermediate layer of a multilayer structure is stably covered by surface resin layers at a time of cutting the multilayer structure. A cutting method of the multilayer structure 10 includes the steps of: compressing and deforming the multilayer structure, while extending respective layers 11, 12, 13 of the multilayer structure to provide a thin thickness portion, so that an upper layer bites into a lower layer by pushing a push cutter 15, by a predetermined amount, into the multilayer structure supported by a cutter receiving portion 14, in a fused state of at least one of the resin layers forming the multilayer structure; and push-cutting the compressed thin thickness portion S till the push cutter abuts against the cutter receiving portion so as to converge an intermediate layer 11 and surface resin layers 12, 13 of the multilayer structure to the abutting portion A of the push cutter 15 and the cutter receiving portion 14.
摘要:
Disclosed are glass photoresists generated from adamantane derivatives containing acetal and/or ester moieties as novel high-performance photoresist materials. Some of the disclosed adamantane-based glass resists have a tripodal structure and other disclosed adamantane-based glass resists include one or more cholic groups. The disclosed adamantane derivatives can be synthesized from starting materials which are commercially available. By way of example only, one of many disclosed amorphous glass photoresists has the following structure:
摘要:
A multilayer printed wiring board includes a first insulating layer, a pair of second insulating layers sandwiching therebetween the first insulating layer, a pair of internal-layer wiring trace formed between the first insulating layer and the second insulating layer, and an external-layer wiring trace formed on the exposed surface of the second insulating layer. A hollow cylindrical via-plug is formed on the inner wall of a first through-hole penetrating through the first insulating layer and connects together the internal-layer wiring traces with each other. A second via-plug formed inside the first via and isolated therefrom by insulating resin connects together the external-layer wiring traces.