摘要:
A semiconductor device includes a first semiconductor element; a first thick plate portion that is electrically connected to an electrode on a lower surface side of the first semiconductor element, and is formed by a conductor; a second semiconductor element that is arranged such that a main surface of the second semiconductor element faces a main surface of the first semiconductor element; a second thick plate portion that is electrically connected to an electrode on a lower surface side of the second semiconductor element, and is formed by a conductor; a third thick plate portion that is electrically connected to an electrode on an upper surface side of the first semiconductor element, and is formed by a conductor; a fourth thick plate portion that is electrically connected to an electrode on an upper surface side of the second semiconductor element, and is formed by a conductor; a first thin plate portion that is provided on the second thick plate portion, is formed by a conductor, and is thinner than the second thick plate portion; and a second thin plate portion that is provided on the third thick plate portion, is formed by a conductor, and is thinner than the third thick plate portion. The first thin plate portion and the second thin plate portion are fixed together and electrically connected.
摘要:
A semiconductor device includes a first semiconductor element; a first thick plate portion that is electrically connected to an electrode on a lower surface side of the first semiconductor element, and is formed by a conductor; a second semiconductor element that is arranged such that a main surface of the second semiconductor element faces a main surface of the first semiconductor element; a second thick plate portion that is electrically connected to an electrode on a lower surface side of the second semiconductor element, and is formed by a conductor; a third thick plate portion that is electrically connected to an electrode on an upper surface side of the first semiconductor element, and is formed by a conductor; a fourth thick plate portion that is electrically connected to an electrode on an upper surface side of the second semiconductor element, and is formed by a conductor; a first thin plate portion that is provided on the second thick plate portion, is formed by a conductor, and is thinner than the second thick plate portion; and a second thin plate portion that is provided on the third thick plate portion, is formed by a conductor, and is thinner than the third thick plate portion. The first thin plate portion and the second thin plate portion are fixed together and electrically connected.
摘要:
A semiconductor device includes a plurality of semiconductor elements each having a front surface and a back surface; a front surface-side heatsink that is positioned on a front-surface side of the semiconductor elements and dissipates heat generated by the semiconductor elements; a back surface-side heatsink that is positioned on a back surface-side of the semiconductor elements and dissipates heat generated by the semiconductor elements; a sealing material that covers the semiconductor device except for a front surface of the front surface-side heatsink and a back surface of the back surface-side heatsink; a primer that is coated on at least one of the front surface-side heatsink and the back surface-side heatsink and improves contact with the sealing member; and a protruding portion positioned between the plurality of semiconductor elements, on at least one of the back surface of the front surface-side heatsink and the front surface of the back surface-side heatsink.
摘要:
A semiconductor device includes a plurality of semiconductor elements each having a front surface and a back surface; a front surface-side heatsink that is positioned on a front-surface side of the semiconductor elements and dissipates heat generated by the semiconductor elements; a back surface-side heatsink that is positioned on a back surface-side of the semiconductor elements and dissipates heat generated by the semiconductor elements; a sealing material that covers the semiconductor device except for a front surface of the front surface-side heatsink and a back surface of the back surface-side heatsink; a primer that is coated on at least one of the front surface-side heatsink and the back surface-side heatsink and improves contact with the sealing member; and a protruding portion positioned between the plurality of semiconductor elements, on at least one of the back surface of the front surface-side heatsink and the front surface of the back surface-side heatsink.
摘要:
The present invention relates to a semiconductor device and a manufacturing method thereof. The semiconductor device has a plurality of power units placed in parallel in a predetermined direction, wherein each of the power units includes a plurality of semiconductor elements placed on a metal plate having predetermined gaps with each other. The semiconductor elements of each of the two power units include a near-sided semiconductor element that is closer to an inlet of the resin among the two semiconductor elements having the predetermined gap therebetween. A structure is positioned on a passage and downstream in a resin flow direction relative to a predetermined position that corresponds to end parts of the near-sided semiconductor elements. The structure is a joint to connect the two power units placed adjacent to each other in the predetermined direction, and to be integrally sealed with the resin, along with the power unit.
摘要:
A processing apparatus externally receives a processing request and executes the requested processing. The processing apparatus transmits the result of the processing to a processing request source if a connection to the processing request source is maintained until the requested processing is executed. The processing apparatus stores the result of executing the processing in a memory if the connection to the processing request source is disconnected before the end of the requested processing. The processing apparatus transmits the processing result stored in the memory to the processing request source if the processing requested when the processing request is received is executed but is stored in the memory.
摘要:
In a honeycomb filter 20, partition portions and trapping layers are formed such that a pore volume difference that is obtained from pore distributions measured by mercury porosimetry and is a difference in volume of pores having a diameter of 10 μm or less between the downstream portion and the upstream portion of the honeycomb filter, is in the range of 0.01 cm3/g or more and 0.08 cm3/g or less. In the honeycomb filter, in the downstream portion, a first pore volume peak is present in a first pore diameter range of 2 μm or more and 9 μm or less and a second pore volume peak that is higher than the first pore volume peak is present in a second pore diameter range of 10 μm or more and 25 μm or less.
摘要:
There is provided a honeycomb filter wherein particles having an average particle diameter smaller than the average pore diameter of partition walls are deposited at least in open pores formed in the surface layer of the partition wall and in the pores of the partition wall in a surface layer portion of the partition walls on the exhaust gas inflow side, thereby forming a composite region. The average pore diameter of the partition walls is 5 to 40 μm, and the porosity of the partition wall is 35 to 75%. The particles to be deposited have an average particle diameter of 1 to 15 μm, and the height of the composite region is not more than 80 μm in the direction from the outermost contour line of the partition walls to the surface of the partition walls.
摘要:
A honeycomb filter 20 includes a plurality of porous partition portions 22 forming a plurality of cells 23 serving as channels of fluid and trapping layers 24 that are formed on the partition portions and configured to trap a solid component contained in the fluid. In the honeycomb filter 20, a predetermined trapping region present on the partition portions 22 satisfies that, in an inscribed-circle-diameter distribution obtained by dividing an image of the partition portions captured with an electron microscope into a material region and a plurality of pore regions and by drawing maximum inscribed circles individually inscribed in the pore regions, a median pore diameter D50 is 1 μm or more and 6 μm or less and a median pore diameter D80 is 1 μm or more and 7 μm or less, and an inscribed-circle porosity determined from the inscribed-circle-diameter distribution is 35% or more and 60% or less.
摘要:
Each of the red, green and blue column electrodes has widened portions each having a row-direction width larger than that of the other portions. Each of the widened portions faces a head portion of each of the transparent electrodes of a pair of row electrodes constituting each row electrode pair. The widened portion of the green column electrode facing the green discharge cell provided with the green phosphor layer is located in a different position in the column direction from a position of each of the widened portions of the red and blue column electrodes respectively facing the red and blue discharge cells respectively provided with the red and blue phosphor layers.