摘要:
An apparatus (10) is provided for measuring the excess carrier lifetime in a semiconductor material, such as an HgCdTe wafer (MCT). The apparatus includes a computer controller (56) which automates the functions of the apparatus, including the operation of the shutter (28) to control the time the testing samples are exposed to the excitation energy from a laser (14), the laser energy intensity on the sample, the position of the wafer controlled by the computer controller operating a motorized sample positioner (39) and maintaining the temperature of the sample. Multiple samples are taken by the apparatus which are averaged and analyzed to result in a characterization of the carrier lifetime.
摘要:
Optically transitioning pixel-level filtering using a multi-level structure that includes an isolated optically transitioning filter element that is suspended over a corresponding radiation detector element in a one-to-one relationship to provide, for example, one or more features such as spectral detection and/or selective radiation immunity.
摘要:
Microbolometer infrared detector elements that may be formed and implemented by varying type/s of precursors used to form amorphous silicon-based microbolometer membrane material/s and/or by varying composition of the final amorphous silicon-based microbolometer membrane material/s (e.g., by adjusting alloy composition) to vary the material properties such as activation energy and carrier mobility. The amorphous silicon-based microbolometer membrane material/s materials may include varying amounts of one or more additional and optional materials, including hydrogen, fluorine, germanium, n-type dopants and p-type dopants.
摘要:
Methods for making optically blind reference pixels and systems employing the same. The reference pixels may be configured to be identical to, or substantially identical to, the active detector elements of a focal plane array assembly. The reference pixels may be configured to use the same relatively longer thermal isolation legs as the active detector pixels of the focal plane, thus eliminating joule heating differences. An optically blocking structure may be placed in close proximity directly over the reference pixels.
摘要:
A vacuum package for integrated circuit devices includes a sealing ring having multiple control spacers of uniform thickness distributed around the sealing ring. The sealing ring is in a designated area on a substrate, material and surrounds one or more integrated circuit devices. The vacuum package also includes a sealing layer on the sealing ring. A vacuum package lid is sealed to the sealing ring by the sealing layer on the sealing ring. The vacuum package lid provides a vacuum cell for the one or more integrated circuit devices.
摘要:
Optically transitioning pixel-level filtering using a multi-level structure that includes an isolated optically transitioning filter element that is suspended over a corresponding radiation detector element in a one-to-one relationship to provide, for example, one or more features such as spectral detection and/or selective radiation immunity.
摘要:
Systems and methods for color correcting radiation by alternately focusing a first radiation spectrum on a first radiation spectrum detector, and then focusing at least one additional radiation spectrum on at least one additional radiation spectrum detector.
摘要:
Microbolometer infrared detector elements that may be formed and implemented by varying type/s of precursors used to form amorphous silicon-based microbolometer membrane material/s and/or by varying composition of the final amorphous silicon-based microbolometer membrane material/s (e.g., by adjusting alloy composition) to vary the material properties such as activation energy and carrier mobility. The amorphous silicon-based microbolometer membrane material/s materials may include varying amounts of one or more additional and optional materials, including hydrogen, fluorine, germanium, n-type dopants and p-type dopants.
摘要:
A photoconductive isotype heterojunction impedance-matched infrared detector has blocking contacts which are positioned on the bottom side of the detector. The blocking contacts prevent transfer of minority carriers from the active region of the detector, thereby extending the lifetime of these carriers. The detector is formed by first fabricating an active layer followed by an isotype blocking layer on a growth substrate. These layers are etched and appropriate passivation layers and contacts are applied. A mechanical supporting substrate is applied to the detector and the growth substrate is removed. Etch stop holes are formed which extend into the active layer of the detector. A precision thickness of the active layer required in an impedance-matched detector design is produced by thinning the active layer in an etching process until the surface of the active layer reaches the etch stop hole. The detector produced in accordance with the structure and methods set forth herein is highly suitable for use in an array of such detectors which can form an infrared focal plane array.
摘要:
A method of forming a eutectic bond, of Cadmium Telluride to Sapphire utilizing the Gold/Silicon eutectic bonding of the Cadmium Telluride to the Sapphire. A multi-layer structure of: Chromium which provides adhesion to the Cadmium Telluride; a Titanium layer which functions as a diffusion barrier to the Gold, and a Gold layer are sequentially evaporated on the Cadmium Telluride; a separate multilayered structure of: Silicon grown on Sapphire, and Gold evaporated upon the Silicon. These two multilayered structures are then eutectically bonded. This method enables the expansion coefficient of the eutectic layer to be tailored through the Gold concentration to match that of the Cadmium Telluride. This method also allows the bonding stress to be confined between the Gold/Silicon eutectic and the Sapphire substrate, eliminating the bonding stress in the Cadmium Telluride. Also, due to the precision of the thickness of the evaporated layers, the bonded substrates are inherently planar and parallel.