Abstract:
A method of forming a crystalline structure film containing strontium, titanium, and oxygen on a substrate, includes: forming an amorphous structure film on a surface of a titanium nitride film formed on a surface of the substrate, the amorphous structure film containing strontium and oxygen and having a titanium content adjusted so that a content ratio of titanium to strontium based on the number of atoms becomes a value in a range of 0 or more and less than 1.0; and obtaining a crystalline structure film containing strontium, titanium and oxygen and containing titanium diffused from the titanium nitride film by heating the substrate, on which the amorphous structure film is formed, at a temperature of 500 degrees C. or higher.
Abstract:
There is provided a metal contamination prevention method performed by passing a metal chloride gas through a metal component having a surface covered with an inactive film formed of a chromium oxide, the method including: generating a chromium chloride (III) hexahydrate by supplying a hydrochloric acid to the inactive film covering the surface of the metal component and allowing the chromium oxide to react with the hydrochloric acid; removing a chromium from the inactive film by evaporating the chromium chloride (III) hexahydrate; and covering a surface of the inactive film with a compound containing a metal contained in the metal chloride gas.
Abstract:
Provided are a method of manufacturing a capacitor capable of achieving a high dielectric constant property and a low leakage current, a capacitor, and a method of forming a dielectric film used in the capacitor. The capacitor is fabricated by forming a lower electrode layer on a substrate; forming a first TiO2 film having an interface control function on the lower electrode layer; forming a ZrO2-based film on the first TiO2 film; performing an annealing process for crystallizing ZrO2 in the ZrO2-based film, after forming the ZrO2-based film; forming a second TiO2 film which serves as a capacity film on the ZrO2-based film; and forming an upper electrode layer on the second TiO2 film.
Abstract:
A method and apparatus of forming a thin film using an organic metal compound gas and oxidizing agents are disclosed. The method includes performing a first film formation process of forming a thin film on an object to be processed using an organic metal compound gas and a first oxidizing agent; performing an annealing process of supplying a second oxidizing agent having stronger oxidizing power than the first oxidizing agent into the reaction chamber while an interior of the reaction chamber is heated to a predetermined temperature; and performing a second film formation process of forming a thin film on the thin film formed in the first thin film formation process using the organic metal compound gas and the second oxidizing agent.
Abstract:
Provided is a method of forming a TiSiN film on a surface of an object to be processed, the method including: repeating a first cycle a first predetermined number of times, the first cycle including supplying Ti raw material gas containing Ti raw material into a processing chamber, and supplying nitriding gas containing a nitridant into the processing chamber after the Ti raw material gas is supplied into the processing chamber; and repeating a second cycle a second predetermined number of times after repeating the first cycle the first predetermined number of times, the second cycle including supplying Si raw material gas containing Si raw material into the processing chamber, and supplying nitriding gas containing a nitridant into the processing chamber after the Si raw material gas is supplied into the processing chamber, wherein the Si raw material gas comprises an amine-based Si raw material gas.
Abstract:
The method for fabricating a semiconductor device is to fabricate a semiconductor device including GaN (gallium nitride) that composes a semiconductor layer and includes a step of forming a gate insulating film. In the step, at least one film selected from the group consisting of a SiO2 film and an Al2O3 film is formed on a nitride layer containing GaN by using microwave plasma and the formed film is used as at least a part of the gate insulating film.
Abstract translation:制造半导体器件的方法是制造包括构成半导体层的GaN(氮化镓)的半导体器件,并且包括形成栅极绝缘膜的步骤。 在该步骤中,通过使用微波等离子体在包含GaN的氮化物层上形成选自由SiO 2膜和Al 2 O 3膜构成的组中的至少一种膜,并且所形成的膜用作栅极绝缘膜的至少一部分。
Abstract:
Provided is a method of forming a film of metal compound of first and second materials on an object to be processed, one of the first and second materials being metal, which includes: supplying a raw material gas containing the first material to the object such that the first material is adsorbed onto the object; supplying a raw material gas containing the second material to the object with the first material adsorbed thereon such that the second material is adsorbed onto the object with the first material adsorbed thereon; and supplying a third material different from the first and second materials onto the first and second materials adsorbed onto the object such that the first to third materials are chemically combined with one another.
Abstract:
Provided is a method of forming a gate insulating film for use in a MOSFET for a power device. An AlN film is formed on a SiC substrate of a wafer W and then the formation of an AlO film and the formation of an AlN film on the formed AlO film are repeated, thereby forming an AlON film having a laminated structure in which AlO films and AlN films are alternately laminated. A heat treatment is performed on the AlON film having the laminated structure.