Abstract:
A substrate liquid processing apparatus includes a processing liquid storage unit configured to store a processing liquid therein; a processing liquid drain unit configured to drain the processing liquid from the processing liquid storage unit; and a control unit. The control unit performs a first control in a constant concentration mode in which a concentration of the processing liquid in the processing liquid storage unit is regulated to a predetermined set concentration and a second control in a concentration changing mode in which the concentration of the processing liquid is changed. In the second control, a set concentration after concentration change is compared with a set concentration before the concentration change, and when the set concentration after the concentration change is lower, the control unit controls the processing liquid drain unit to start draining of the processing liquid.
Abstract:
Disclosed is a substrate liquid processing apparatus including: a processing bath in which a processing liquid is stored; a chemical liquid component supply unit that supplies chemical liquid components; a concentration detecting unit that detects a concentration of the chemical liquid components; and a controller configured to perform a first control as a feedback control that replenishes the processing liquid with the chemical liquid components such that the concentration of the chemical liquid components contained in the processing liquid within the processing bath does not become less than a predetermined allowable lower limit, based on the concentration of the chemical liquid components detected by the concentration detecting unit. In addition, the controller performs a second control that replenishes the processing liquid with the chemical liquid components in a predetermined amount required to offset a reduction in concentration of the chemical liquid components caused by the introduction of the substrate.
Abstract:
A substrate processing system includes a carry-in/out unit in which a cassette accommodating therein multiple substrates is carried in and out; a batch processing unit configured to process a lot including the multiple substrates at once; a single-wafer processing unit configured to process the substrates one by one; a first interface unit configured to distribute the substrates to the single-wafer processing unit or the batch processing unit; and a second interface unit configured to transfer the substrates between the batch processing unit and the single-wafer processing unit. The first interface unit includes a first placement unit configured to place therein the substrates before and after being processed by the single-wafer processing unit; a second placement unit configured to place therein the substrates before being processed by the batch processing unit; and a transfer device configured to transfer the substrates to the first placement unit and the second placement unit.
Abstract:
A substrate liquid processing apparatus A1 includes a processing tub 41 accommodating a processing liquid 43 and a substrate 8; a gas nozzle 70 discharging a gas into a lower portion within the processing tub 41; a gas supply unit 90 supplying the gas; a gas supply line 93 connecting the gas nozzle 70 with the gas supply unit 90; a decompression unit 95 introducing the processing liquid 43 within the processing tub 41 into the gas supply line 93 by decompressing the gas supply line 93; and a control unit 7 performing a first control of controlling the gas supply unit 90 to stop supply of the gas and controlling the decompression unit 95 to introduce the processing liquid 43 into the gas supply line 93 in a part of an idle period during which the substrate 8 is not accommodated in the processing tub 41.
Abstract:
A substrate liquid processing apparatus A1 includes a processing tub 41 accommodating a processing liquid 43 and a substrate 8; a gas nozzle 70 discharging a gas into a lower portion within the processing tub 41; a gas supply unit 90 supplying the gas; a gas supply line 93 connecting the gas nozzle 70 with the gas supply unit 90; a decompression unit 95 introducing the processing liquid 43 within the processing tub 41 into the gas supply line 93 by decompressing the gas supply line 93; and a control unit 7 performing a first control of controlling the gas supply unit 90 to stop supply of the gas and controlling the decompression unit 95 to introduce the processing liquid 43 into the gas supply line 93 in a part of an idle period during which the substrate 8 is not accommodated in the processing tub 41.
Abstract:
Disclosed is a substrate liquid processing apparatus including: a processing bath in which a processing liquid is stored; a chemical liquid component supply unit that supplies chemical liquid components; a concentration detecting unit that detects a concentration of the chemical liquid components; and a controller configured to perform a first control as a feedback control that replenishes the processing liquid with the chemical liquid components such that the concentration of the chemical liquid components contained in the processing liquid within the processing bath does not become less than a predetermined allowable lower limit, based on the concentration of the chemical liquid components detected by the concentration detecting unit. In addition, the controller performs a second control that replenishes the processing liquid with the chemical liquid components in a predetermined amount required to offset a reduction in concentration of the chemical liquid components caused by the introduction of the substrate.
Abstract:
Disclosed is a substrate liquid processing apparatus including: a processing bath in which a mixture of sulfuric acid and hydrogen peroxide is stored, and a substrate is immersed in the stored mixture such that a processing is performed on the substrate; an outer bath configured to receive the mixture flowing out from the processing bath; a circulation line configured to return the mixture in the outer bath to the processing bath; a sulfuric acid supply unit configured to supply sulfuric acid to the mixture; a first hydrogen peroxide supply unit configured to supply hydrogen peroxide to the mixture in the outer bath; and a second hydrogen peroxide supply unit configured to supply hydrogen peroxide to the mixture flowing through a downstream portion of the circulation line.
Abstract:
A substrate processing apparatus, which utilizes a first transfer apparatus and a second transfer apparatus which are configured to transfer a transfer container containing a plurality of substrates, along a first transfer path and a second transfer path whose lateral positions differ from each other, respectively, including a first load port where the transfer container is loaded and unloaded by the first transfer apparatus, and a second load port that is arranged stepwise with respect to the first load port, with the transfer container being loaded to and unloaded from the second load port by the second transfer apparatus.
Abstract:
Disclosed is a substrate liquid processing apparatus including: a processing bath in which a mixture of sulfuric acid and hydrogen peroxide is stored, and a substrate is immersed in the stored mixture such that a processing is performed on the substrate; an outer bath configured to receive the mixture flowing out from the processing bath; a circulation line configured to return the mixture in the outer bath to the processing bath; a sulfuric acid supply unit configured to supply sulfuric acid to the mixture; a first hydrogen peroxide supply unit configured to supply hydrogen peroxide to the mixture in the outer bath; and a second hydrogen peroxide supply unit configured to supply hydrogen peroxide to the mixture flowing through a downstream portion of the circulation line.
Abstract:
A substrate liquid processing apparatus A1 includes a processing liquid storage unit 38 configured to store a processing liquid therein; a processing liquid drain unit 41 configured to drain the processing liquid from the processing liquid storage unit 38; and a control unit 7. The control unit 7 performs a first control in a constant concentration mode in which a concentration of the processing liquid in the processing liquid storage unit 38 is regulated to a predetermined set concentration and a second control in a concentration changing mode in which the concentration of the processing liquid is changed. In the second control, a set concentration after concentration change is compared with a set concentration before the concentration change, and when the set concentration after the concentration change is lower, the control unit controls the processing liquid drain unit 41 to start draining of the processing liquid.