Abstract:
According to one embodiment, there is provided a carbon hard mask laminated on an etching target film, in which the concentration ratio of a methylene group CH2 and a methyl group CH3 contained in the carbon hard mask satisfies the expression CH2/(CH2+CH3)≥0.5.
Abstract:
The etching method includes a modification process and a removal process. In the modification process, a fluorine containing gas is supplied to an object having a silicon oxide film, so that a modification layer is formed on the surface of the silicon oxide film. In the removal process, the object, on which the modification layer has been formed, is exposed to plasma of a gas that contains ammonia, so that the modification layer is removed from the object. In addition, the modification process and the removal process are alternately repeated a plurality of times.
Abstract:
A film forming apparatus includes a gas injection unit having a shower plate provided with gas injection holes, and a plurality of partition regions through which gases are separately injected and which are defined by dividing an arrangement region of the gas injection holes into a plurality of concentric regions in a diametrical direction of the substrate. A supply amount of a raw material gas per unit time in a raw material gas supply period in a cycle of forming a monomolecular layer by supplying the raw material gas and a reactant gas multiple times, and per unit area of the shower plate, and/or a supply amount of the reactant gas per unit time in a reaction period of the raw material gas and the reactant gas in the cycle, and per unit area of the shower plate becomes different in at least two of the partition regions.
Abstract:
An internal member of a plasma processing vessel includes a base material and a film formed by thermal spraying of ceramic on a surface of the base material. The film is formed of ceramic which includes at least one kind of element selected from the group consisting of B, Mg, Al, Si, Ca, Cr, Y, Zr, Ta, Ce and Nd. In addition, at least a portion of the film is sealed by a resin.
Abstract:
A dividing plate has insulating properties, and divides the inside of a processing vessel into a reaction chamber in which a body to be processed is placed, and a plasma generating chamber for generating plasma. Further, the dividing plate is provided, on a surface thereof on the side of the plasma generating chamber, with a first electrode, and a plurality of through holes for supplying active species included in the plasma generated in the plasma generating chamber to the reaction chamber. The second electrode is disposed facing the first electrode in the plasma generating chamber. When plasma is to be generated in the plasma generating chamber, an electric power supply unit supplies either the first electrode or the second electrode with high-frequency electric power in which high-frequency electric power in a plurality of frequencies is superimposed by phase control.
Abstract:
A film forming apparatus includes: a processing container; a support mechanism configured to support a substrate to be capable of being raised and lowered; a first gas supplier configured to supply a first gas to a front surface of the substrate supported on the support mechanism; a second gas supplier configured to supply a second gas to a rear surface of the substrate supported on the support mechanism; and a third gas supplier configured to supply a third gas to at least one of the front surface and the rear surface of the substrate supported on the support mechanism.
Abstract:
A film forming apparatus includes a vacuum-evacuable processing chamber, a lower electrode for mounting thereon a target substrate, an upper electrode disposed to face the lower electrode, a gas supply unit, a voltage application unit and a switching unit. The gas supply unit supplies a film forming source gas to be formed into plasma to a processing space between the upper and the lower electrode. The voltage application unit applies to the upper electrode a voltage outputted from at least one of a high frequency power supply and a DC power supply included therein. The switching unit selectively switches the voltage to be applied to the upper electrode among a high frequency voltage outputted from the high frequency power supply, a DC voltage outputted from the DC power supply, and a superimposed voltage in which the DC voltage is superimposed with the high frequency voltage.
Abstract:
A thermal catalytic layer is formed on the inner surface of a processing container and heated. Thus, when a sublimate sublimated from a coating film on a wafer W and received within the processing container reaches the vicinity of the thermal catalytic layer, the sublimate is decomposed and removed by the thermal activation of the thermal catalytic layer. In removing a sublimate attached to a light transmission window, a cleaning substrate formed with the thermal catalytic layer on the surface thereof is carried into the processing container and caused to approach the light transmission window. Thereafter, the cleaning substrate is heated so that the sublimate attached to the surface of the light transmission window is removed.
Abstract:
To provide a method for producing a filtration filter that can simplify the process for providing clean water or freshwater. By etching silicon substrate 1 using masking film formed on a surface of substrate 1 and having numerous openings to expose portions of the surface, numerous circular holes 2 with an approximate diameter of 100 nm are formed in substrate 1. Diameter (D1) at minimum-diameter portions 4 near the openings of circular holes 2 to be reduced by silica film 3 is adjusted to be 1 nm˜100 nm by depositing silica film 3 on the inner surfaces of circular holes 2.
Abstract:
The storage is configured to store model data generated based on data including, in patterns, a processing condition for substrate processing, an attitude of a movable part that affects a processing result of the substrate processing, and the processing result of the substrate processing. The processing controller is configured to use the model data stored in the storage to control the substrate processing, including control of the processing condition for the substrate processing and control of the attitude of the movable part, according to a condition to be satisfied by the processing result of the substrate processing.