摘要:
A floating gate memory with a protocol which terminates a program load cycle upon detecting a predetermined address and/or data pattern, providing positive indication of the end of the load cycle, and eliminating the requirement for a long pulse in a controlled signal. Command logic executes a process to store a block of data in response to a sequence of addresses and data segments received at the input/output circuitry, and detects the last segment in a block of data in response to a pattern including at least one of the addresses and data segments received at the input/output circuitry. One pattern includes consecutive matching addresses. Pattern match logic included in the command logic is coupled to the input/output circuitry and stores addresses in the sequence and compares them with a next address to indicate a matching address. Alternatively, the pattern includes both matching addresses and data segments with corresponding comparator circuitry. Alternatively, the pattern comprises a command address which is outside the address field of the memory array. The command address may include all or only a high order segment of the actual data address. The floating gate memory includes a state machine which automatically programs and verifies programming of the block of data after the last segment of the block is detected, and may comprise a flash memory or electrically erasable programmable read only memory (EEPROM).
摘要:
A floating gate memory device which includes control circuits to generate a repair pulse to repair over-erased cells so they may be repaired block-by-block. This invention includes repairing the cells by applying a repair pulse to the cell's bit line while maintaining the word line voltage above ground. In a different embodiment, the word line voltage is maintained at two different voltage levels above ground. In the first stage, the word line voltage is maintained between approximately 0.1 volts and 0.2 volts for approximately 100 ms while the repair pulse is applied. In the second stage, the word line voltage is maintained between approximately 0.4 volts and 0.5 volts for approximately 100 ms while the repair pulse is applied.
摘要:
A flexible technique for improving yield of manufacturing of high density of memory devices, such as flash EEPROM, involves reconfiguring an integrated circuit memory array having a plurality of sectors selected by an address decoder in response to an N bit field in an address. If defective sectors are detected in the array, it is partitioned to disable defective sectors by configuring a sector decoder to prevent access to the defective sectors while maintaining sequential addressing remaining sectors in the array. The step of partitioning includes configuring the sector decoder to replace a defective sector in one half of the array by another sector in the other half of the array having N-m of the N address bits in common with the defective sector when m is between 1 and N-1.
摘要:
Wordline driver circuitry drives a plurality of wordlines in a flash EEPROM memory array in a first mode which selects between a positive voltage and ground, and a second mode which selects between a negative voltage and ground. A first supply voltage selector supplies positive voltage during the first mode, and a second mode reference voltage, such as ground, in the second mode. A second supply voltage selector supplies the first mode reference voltage such as ground in the first mode, and the negative voltage during a second mode. An inverting driver has an input which receives a wordline select signal, and an output coupled to the wordline, a first supply voltage input connected to the first supply voltage selector, and second supply voltage input connected to the second supply voltage selector. The inverting driver couples the first supply voltage input to the wordline when the wordline select signal is in a low state, and couples the second supply voltage input to the wordline when the wordline select signal is in a high state. A second inverter is connected in feedback across the inverting driver to hold the input of the inverting driver at the value of the wordline select signal during the negative voltage decode. The wordline select signals come from an address decoder. An isolation circuit is provided between the address decoder and the input to the inverting driver to isolate the decoder from the negative voltages which appear on the output of the second inverter during the negative voltage decoding state.
摘要:
A new flash memory cell structure and operational bias is based on the use of a triple well flash memory cell which allows pre-programming by Fowler Nordheim (F-N) tunneling over blocks of cells at a time. The floating gate memory cell is made in a semiconductor substrate having a first conductivity type, such as p-type. A first well within the substrate by having a second conductivity type different than the first conductivity type is included. A second well within the first well is also included having the first conductivity type. A drain and a source are formed in the second well having the second conductivity type, and spaced away from one another to define a channel area between the drain and the source. A floating gate and control gate structure is included over the channel area. The floating gate memory cell is coupled with circuits that induce F-N tunneling of electrons out of the floating gate into the channel area of the substrate for erasing by applying a positive voltage to the second well, such as a voltage higher than the supply voltage, applying a positive voltage to the first well, which is substantially equal to the positive voltage of the second well, applying a negative voltage to the control gate of the cell, while the substrate is grounded. A block wide pre-program operation involves F-N tunneling of electrons into the floating gate from the channel area, using a negative voltage in the second well.
摘要:
Substantial reduction in peak current encountered during an erase process for a flash memory device is achieved by selection of source voltage potential during the erase according to the expected band-to-band tunneling current encountered during the process. During the beginning of the process, a lower source voltage potential is selected, which is high enough to cause significant erasing while suppressing band-to-band tunneling current in a portion of the array, and during a second part of the erasing process, a higher source potential is utilized, which ensures successful erasing of the array, without exceeding the peak current requirements of the power supply used with the device. The first and second parts of the erase sequence will induce band-to-band tunneling current in addition to Fowler-Nordheim tunneling current. The band-to-band tunneling current is characterized by a turn on threshold source potential which is inversely related to the threshold of the cell receiving the voltage sequence. The source voltage used in the first part of the erase sequence is set at level that is near or above the turn on threshold source potential for higher threshold cells that are in the high threshold state, but less than the turn on threshold source potential for lower threshold cells in the high threshold state. The source potential in the second part is set at level which is near or above the turn on threshold source potential for lower threshold cells in the high threshold state.
摘要:
A method increases endurance of an array of memory cells which have an endurance specified according to the number of change cycles that the memory cell can endure within a performance tolerance. The method is based on arranging the array into a plurality of sectors, and assigning a subset of addresses for storage of data structure expected to change a number of times that is sufficient to exceed the specified endurance of the memory cell in the array. A record is maintained indicating one of the plurality of sectors as a current sector, directing accesses using the subset of addresses to the current sector, counting changes executed to memory cells identified by the subset of addresses for the current sector, and changing the current sector to another one of the plurality of sectors when the count of changes exceeds the threshold.
摘要:
An improved charge pump design is disclosed. This charge pump comprises at least one pumping transistor having a triple well arrangement. This triple pump transistor has a source and a drain region of a first conductive type formed on a first well having an opposite conductive type. A second well having the first conductive type is formed outside of the first well. The source region, first well and second well are set to substantially the same potential. One aspect of this configuration is that the first well forms a semiconductor diode with the drain region. Another aspect of this arrangement is that the body effect of the transistor is reduced. The reduction in body effect reduces the threshold voltage of the transistor. It is found that the above mentioned diode and threshold voltage reduction, singly and in combination, allow the charge pump to operate more efficiently.
摘要:
An array (10) of multi-level floating gate memory cells includes wordlines (18) connected to memory cells along a row in the array, and bit lines (12) connected to memory cells along a column in the array. A wordline voltage source (27) is included which supplies selectively wordline voltages corresponding to respective threshold voltages of the memory cells in the array. A plurality of bit latches form a page buffer (11). Bit latches are coupled to corresponding bit lines, and have a first state and a second state. The bit latches include circuits (213-216) to change the bit latches from the first state to the second state in response to signals on the corresponding bit lines that are generated in response to a wordline voltage on a selected wordline being greater than or equal to the threshold voltage of a memory cell on the corresponding bit line connected to the selected wordline. Logic (21) controls the wordline voltage source and the bit latches to apply in a sequence the wordline voltages, and to sense the state of the bit latches after applying each wordline voltage in the sequence to determine the threshold voltages of the memory cells.
摘要:
A sensing circuit for sensing the logic state of a memory cell which minimizes read times is described which includes a first circuit branch corresponding to an array circuit path and a second circuit branch corresponding to a reference cell circuit path. In operation during the pre-decode interval, additional load and current generation circuitry are enabled in the first circuit path so that the voltage as seen by the sensing input of a sensing circuit comparator is driven to be essentially equivalent to that of the reference signal as established by the reference cell circuit path on the reference input of the sensing circuit comparator. Once the address has been decoded, the additional load circuitry is disabled so as to allow the sensing input of the comparator to transition to a voltage representative of the logic state stored in the memory cell.