Abstract:
A test chip, which allows a number of solution delivery steps much faster and accurate is provided. The test chip incorporates a sample flow path for containing a sample solution, a reaction flow path for inducing a predetermined reaction with the sample solution, a waste drain path for receiving the used sample, and the washing solution flow paths for containing washing solutions. The reaction flow path contains a plurality of beads having probes of mutually different types fixed thereon. The sample flow path, washing solution flow paths, and sample waste drain path have their respective solution detector units. The solution detector unit detects whether the solution is fed to the path. The detector units adjoiningly provided in the adjacent paths are arranged collinearly.
Abstract:
A call control system can cope with a plurality of exchanges that support call control messages issued in accordance with different protocols. The call control system for use in a subscriber transmission device is located along a transmission path between a plurality of subscribers and a plurality of exchanges. The call control system includes call control message terminal sections, each of which is provided for each of the protocols that are supported by the exchanges for terminating a data link for sending and receiving a call control message to and from a corresponding exchange. A call change data processor is provided in the system for detecting a call and a clearance by a subscriber, and for requesting the call control message terminal section, which supports a protocol that corresponds to a protocol of an exchange to which is connected to the subscriber, to transmit the detected contents to the exchange that supports the protocol.
Abstract:
A semiconductor device formed in a semiconductor substrate and having a gate electrode formed on the semiconductor substrate, source and drain regions are formed in said the semiconductor substrate. The source and drain regions are made of a first impurity region doped with impurities of an opposite conductivity type to that of a semiconductor substrate formed at portions adjacent to the edge of the gate electrode, a second impurity region doped with impurities of an opposite conductivity type to that of a semiconductor substrate formed at portions under the first impurity region, and a third impurity region doped with impurities of opposite conductivity type to that of a semiconductor substrate formed at portions spaced apart from the edge of the gate electrode. The impurities of the second impurity region have a diffusion coefficient larger than that of the impurities of the first impurity region. The third impurity region has a higher concentration than that of the first and the second impurity regions and in addition the impurities of the third impurity region have a diffusion coefficient smaller than that of the second impurity region.
Abstract:
This invention provides a sample analyzing device and sample analyzing method designed to suppress nonuniform capture of magnetic particles (10) and detect a desired substance with higher accuracy. The sample analyzing device includes a flow channel (15) that conducts thereinto a sample which contains the magnetic particles (10), and magnetic field generating means (12) that generates magnetic fields for capturing the magnetic particles (10) in a magnetic particles capturing region of the flow channel (15); wherein the flow channel has at least one of structural characteristics that a cross-sectional area of the flow channel, at a downstream end of the magnetic particles capturing region, is larger than a cross-sectional area of the flow channel, at an upstream end of the magnetic particles capturing region, and that the magnetic fields generated by the magnetic field generating means (12) have a greater magnitude at a downstream side of the magnetic particles capturing region than at an upstream side thereof.
Abstract:
The present invention is directed to provide a preparation chip system having a simpler configuration and improved reliability while addressing the case where a plurality of reagents have to be fed as in a preparation of extracting DNA from a sample solution. The preparation chip system includes a sample chamber, a dissolving solution chamber, a cleaning solution chamber, an eluting solution chamber, a mixing passage connected to the sample chamber and the dissolving solution chamber and mixing the sample and the dissolving solution with each other, a carrier part connected to the mixing passage, a waste chamber connected to the carrier part via a holding passage, a collection chamber holding the eluting solution passed through the carrier part, and a plurality of resistive materials forming a passage resistor disposed in a first passage connecting the cleaning solution chamber with both the mixing passage and the carrier part. The eluting solution is passed through the carrier part by pressure from a pressure source.
Abstract:
Within an inside of a bead chip forming a reactor flow pass therein, rinsing liquid flow passes are also provided in one body. For the purpose of promoting reaction upon a bead array, a turbulence generator or an flow separation stop guide is provided within the reactor flow pass, in which the beads are received. The bead chip is made of a PDMS (Polydimethylsiloxane: (C2H6SiO)n), thereby enabling the reactor flow pass and the rinsing liquid flow passes to be formed freely in the configurations thereof.
Abstract translation:在形成反应器流动通道的珠粒的内部,冲洗液体流动通道也设置在一体中。 为了促进珠粒阵列上的反应,在反应器流动通道内提供湍流发生器或流动分离停止引导件,其中容纳珠子。 珠芯片由PDMS(聚二甲基硅氧烷:(C 2 H 6 SiO)SiO)N)制成,从而使反应器流过, 冲洗液流在其结构中自由形成。
Abstract:
A ring network of a multicast label switch path scheme includes a plurality of nodes connected to form a ring. Further, a signal input to a first one of the nodes is branched to be transmitted in first and second different directions to a second and a third one of the nodes through a first working path and a second working path, respectively, in the ring network, the second one and the third one of the nodes defining end points of the first working path and the second working path, respectively, from the first one of the nodes, and a first backup path is set from the second one of the nodes to the first one of the nodes in the first direction, and a second back up path is set from the third one of the nodes to the first one of the nodes in the second direction.
Abstract:
This invention provides a sample analyzing device and sample analyzing method designed to suppress nonuniform capture of magnetic particles (10) and detect a desired substance with higher accuracy. The sample analyzing device includes a flow channel (15) that conducts thereinto a sample which contains the magnetic particles (10), and magnetic field generating means (12) that generates magnetic fields for capturing the magnetic particles (10) in a magnetic particles capturing region of the flow channel (15); wherein the flow channel has at least one of structural characteristics that a cross-sectional area of the flow channel, at a downstream end of the magnetic particles capturing region, is larger than a cross-sectional area of the flow channel, at an upstream end of the magnetic particles capturing region, and that the magnetic fields generated by the magnetic field generating means (12) have a greater magnitude at a downstream side of the magnetic particles capturing region than at an upstream side thereof.
Abstract:
A reaction apparatus is provided with a reaction chip (50) for setting plural temperature regions and including a reaction channel (59) formed over these temperature regions, a pump for supplying a reaction liquid to a reaction channel of the reaction chip (50), a control device for controlling supply of the reaction liquid, and a heater for heating each of the temperature regions of the reaction chip (50) to the preset temperature. The reaction chip (50) is provided with a vacuum shielding layer (62) at the boundaries for separating each of the temperature regions. Accordingly, the reaction apparatus assures uniform and stable reaction within a short period of time.
Abstract:
There is provided an inspection chip capable of performing a number of solution feeding processes promptly and accurately. The inspection chip has one continuous flow path comprising a reaction flow path for accommodating a plurality of beads with immobilized probes of types different each other, a first and second solution holding flow path for holding a plurality of solutions each separated by an air gap. The solution is moved from one solution holding flow path to other solution holding flow path via a reaction flow path by utilizing pressure difference.