Abstract:
An optical component including a multi-layer substrate, an optical waveguide element, and two optical-electro assemblies is provided. The multi-layer substrate includes a dielectric layer, two circuit layers, and two through holes passing through the dielectric layer. The optical waveguide element is located on the multi-layer substrate and between the through holes. The optical-electro assemblies are respectively inserted into the corresponding through holes and correspondingly located at two opposite ends of the optical waveguide element. One of the optical-electro assemblies transforms an electrical signal into a light beam and provides the light beam to the optical waveguide element, and the other one of the optical-electro assemblies receives the light beam transmitted from the optical waveguide element and transforms the light beam into another electrical signal. A manufacturing method of the optical component and an optical-electro circuit board having the optical component are also provided.
Abstract:
A vehicle door opening warning system including a control unit, a projection unit and a detection unit is provided. The control unit is disposed at a door of a vehicle. The projection unit is disposed at the door and is electrically coupled to the control unit. The detection unit is disposed outside of the vehicle and is electrically coupled to the control unit. When the detection unit detects a moving object existing within 5 to 30 meters of the vehicle, the detection unit produces a signal. The control unit receives the signal and controls the projection unit to project a warning message according to the signal. A vehicle door opening warning method is also provided.
Abstract:
A circuit board with a heat-recovery function includes a substrate, a heat-storing device, and a thermoelectric device. The heat-storing device is embedded in the substrate and connected to a processor for performing heat exchange with the processor. The thermoelectric device embedded in the substrate includes a first metal-junction surface and a second metal-junction surface. The first metal-junction surface is connected to the heat-storing device for performing heat exchange with the heat-storing device. The second metal-junction surface is joined with the first metal-junction surface, in which the thermoelectric device generates an electric potential by a temperature difference between the first metal-junction surface and the second metal-junction surface.
Abstract:
An optical component including a multi-layer substrate, an optical waveguide element, and two optical-electro assemblies is provided. The multi-layer substrate includes a dielectric layer, two circuit layers, and two through holes passing through the dielectric layer. The optical waveguide element is located on the multi-layer substrate and between the through holes. The optical-electro assemblies are respectively inserted into the corresponding through holes and correspondingly located at two opposite ends of the optical waveguide element. One of the optical-electro assemblies transforms an electrical signal into a light beam and provides the light beam to the optical waveguide element, and the other one of the optical-electro assemblies receives the light beam transmitted from the optical waveguide element and transforms the light beam into another electrical signal. A manufacturing method of the optical component and an optical-electro circuit board having the optical component are also provided.
Abstract:
A manufacturing method for a capacitor is provided. The method includes the following steps. A nano carbon material and an electrolyte solution are mixed to obtain an electrolyte composition. A porous substrate is immersed in the electrolyte composition. The electrodes are formed on two opposite surfaces of the porous substrate.
Abstract:
A preparation method of a conductive sponge includes the following steps. First, a sponge substrate is dipped in a metal solution and then taken out. A first drying process is performed. Next, the sponge substrate plated with metal particles is dipped in a carbon nanomaterial suspension and then taken out. Then, a second drying process is performed.
Abstract:
A capacitor and a manufacturing method thereof are provided. The capacitor includes a porous substrate, an electrolyte composition, and a pair of electrodes. The porous substrate has a plurality of holes. The electrolyte composition is located in the holes of the porous substrate, and the electrolyte composition includes an electrolyte solution and a nano carbon material dispersed in the electrolyte solution. The electrodes are respectively located on two opposite surfaces of the porous substrate.
Abstract:
A circuit board and a manufacturing method thereof are provided. The circuit board includes a dielectric substrate, a circuit pattern and a dielectric layer. The circuit pattern is disposed on the dielectric substrate. The dielectric layer is disposed on the dielectric substrate and covers the circuit pattern. The dielectric layer includes a dielectric matrix and a mesh-shaped fiber structure disposed in the dielectric matrix. There is no mesh-shaped fiber structure on a portion of the dielectric substrate exposed by the circuit pattern.
Abstract:
A capacitor and a manufacturing method thereof are provided. The capacitor includes a porous substrate, an electrolyte composition, and a pair of electrodes. The porous substrate has a plurality of holes. The electrolyte composition is located in the holes of the porous substrate, and the electrolyte composition includes an electrolyte solution and a nano carbon material dispersed in the electrolyte solution. The electrodes are respectively located on two opposite surfaces of the porous substrate.
Abstract:
An optical component including a multi-layer substrate, an optical waveguide element, and two optical-electro assemblies is provided. The multi-layer substrate includes a dielectric layer, two circuit layers, and two through holes passing through the dielectric layer. The optical waveguide element is located on the multi-layer substrate and between the through holes. The optical-electro assemblies are respectively inserted into the corresponding through holes and correspondingly located at two opposite ends of the optical waveguide element. One of the optical-electro assemblies transforms an electrical signal into a light beam and provides the light beam to the optical waveguide element, and the other one of the optical-electro assemblies receives the light beam transmitted from the optical waveguide element and transforms the light beam into another electrical signal. A manufacturing method of the optical component and an optical-electro circuit board having the optical component are also provided.