摘要:
The present invention provides a composition for detecting and/or characterizing a multiple-charged biomolecule comprising a charged d8 or d10 metal complex, wherein the metal complex electrostatically binds to the multiple-charged biomolecule to induce aggregation and self-assembly of the metal complex through metal . . . metal interactions, π . . . π interactions, or a combination of both interactions. The present invention further provides assay methods and kits for label-free optical detection and/or characterization of biomolecules carrying multiple charges, e.g., single-stranded nucleic acids, polyaspartate, polyglutamate, using a composition comprising a charged d8 or d10 metal complex.
摘要:
Semiconductor structures, such as, for example, field effect transistors (FETs) and/or metal-oxide-semiconductor capacitor (MOSCAPs), are provided in which the workfunction of a conductive electrode stack is changed by introducing metal impurities into a metal-containing material layer which, together with a conductive electrode, is present in the electrode stack. The choice of metal impurities depends on whether the electrode is to have an n-type workfunction or a p-type workfunction. The present invention also provides a method of fabricating such semiconductor structures. The introduction of metal impurities can be achieved by codeposition of a layer containing both a metal-containing material and workfunction altering metal impurities, forming a stack in which a layer of metal impurities is present between layers of a metal-containing material, or by forming a material layer including the metal impurities above and/or below a metal-containing material and then heating the structure so that the metal impurities are introduced into the metal-containing material.
摘要:
A transistor device and method of forming the same comprises a substrate; a first gate electrode over the substrate; a second gate electrode over the substrate; and a landing pad comprising a pair of flanged ends overlapping the second gate electrode, wherein the structure of the second gate electrode is discontinuous with the structure of the landing pad.
摘要:
Gate conductors on an integrated circuit are formed with enlarged upper portions which are utilized to electrically connect the gate conductors with other devices. A semiconductor device comprises a gate conductor with an enlarged upper portion which electrically connects the gate conductor to a local diffusion region. Another semiconductor device comprises two gate conductors with enlarged upper portions which merge to create electrically interconnected gate conductors. Methods for forming the above semiconductor devices are also described and claimed.
摘要:
A method of reading a memory cell, and a memory array using the method, are described. An electrical load is applied to a first node in the memory array, the first node corresponding to the memory cell. A second node in the memory array, the second node on a same word line as the first node, is precharged. The second node is separated from the first node by at least one intervening node in the same word line.
摘要:
A conductor-dielectric interconnect structure is fabricated by providing a structure comprising a dielectric layer having a patterned feature therein; depositing a plating seed layer on the dielectric layer in the patterned feature; depositing a sacrificial seed layer on the plating seed layer in the via; reducing the thickness of the sacrificial seed layer by reverse plating; and plating a conductive metal on the sacrificial seed layer in the patterned feature. Also provided is a dielectric layer having a via therein; a plating seed layer on the dielectric layer in the patterned feature; and a discontinuous sacrificial seed layer located in the patterned feature.
摘要:
A method for forming a metal suicide contact for a semiconductor device includes forming a refractory metal layer over a substrate, including active and non-active area of said substrate, and forming a cap layer over the refractory metal layer. A counter tensile layer is formed over the cap layer, wherein the counter tensile layer is selected from a material such that an opposing directional stress is created between the counter tensile layer and the cap layer, with respect to a directional stress created between the refractory metal layer and the cap layer.
摘要:
A method for forming a TiN layer on top of a metal silicide layer in a semiconductor structure without the formation of a thick amorphous layer containing Ti, Co and Si and the structure formed are provided. In the method, after a Ti layer is deposited on top of a metal silidide layer, a dual-step annealing process is conducted in which a low temperature annealing in a forming gas (or ammonia) at a temperature not higher than 500° C. is first conducted for less than 2 hours followed by a high temperature annealing in a nitrogen-containing gas (or ammonia) at a second temperature not lower than 500° for less than 2 hours to form the TiN layer. The present invention method prevents the problem usually caused by a thick amorphous material layer of Ti—Si—Co which produces weakly bonded Ti which reacts with fluorine atoms from WF6 during a subsequent CVD W deposition process and causes liner failure due to a volume expansion of the amorphous material. The maximum thickness of the amorphous material layer formed by the present invention method is less than 5 nm which minimizes the line failure problem.
摘要:
Methods and systems for evaluating pigment dispersions with desired characteristics. More specifically, methods and systems for evaluating particle size of colorless or light color dispersions using a novel parameter described as particle size related scattering index (PSRSI).
摘要:
Methods and systems for evaluating pigment dispersions with desired characteristics. More specifically, methods and systems for evaluating particle size of colorless or light color dispersions using a novel parameter described as particle size related scattering index (PSRSI).