Collector for EUV light source
    1.
    发明授权
    Collector for EUV light source 有权
    EUV光源收集器

    公开(公告)号:US07217940B2

    公开(公告)日:2007-05-15

    申请号:US10798740

    申请日:2004-03-10

    IPC分类号: H01J35/20

    摘要: A method and apparatus for debris removal from a reflecting surface of an EUV collector in an EUV light source is disclosed which may comprise the reflecting surface comprises a first material and the debris comprises a second material and/or compounds of the second material, the system and method may comprise a controlled sputtering ion source which may comprise a gas comprising the atoms of the sputtering ion material; and a stimulating mechanism exciting the atoms of the sputtering ion material into an ionized state, the ionized state being selected to have a distribution around a selected energy peak that has a high probability of sputtering the second material and a very low probability of sputtering the first material. The stimulating mechanism may comprise an RF or microwave induction mechanism.

    摘要翻译: 公开了一种用于从EUV光源中的EUV收集器的反射表面去除碎屑的方法和装置,其可以包括反射表面,其包括第一材料,并且所述碎屑包括第二材料和/或第二材料的化合物,所述系统 并且方法可以包括受控的溅射离子源,其可以包括包含溅射离子材料的原子的气体; 以及将溅射离子材料的原子激发成离子化状态的刺激机构,所选择的离子化状态具有围绕选择的能量峰的分布,其具有溅射第二材料的可能性很高,并且溅射的可能性非常低 材料。 刺激机构可以包括RF或微波感应机构。

    EUV light source
    8.
    发明授权
    EUV light source 有权
    EUV光源

    公开(公告)号:US07323703B2

    公开(公告)日:2008-01-29

    申请号:US11647007

    申请日:2006-12-27

    IPC分类号: H01J35/20

    摘要: An apparatus and method is described which may comprise a plasma produced extreme ultraviolet (“EUV”) light source multilayer collector which may comprise a plasma formation chamber; a shell within the plasma formation chamber in the form of a collector shape having a focus; the shell having a sufficient size and thermal mass to carry operating heat away from the multilayer reflector and to radiate the heat from the surface of the shell on a side of the shell opposite from the focus. The material of the shell may comprise a material selected from a group which may comprise silicon carbide, silicon, Zerodur or ULE glass, aluminum, beryllium, molybdenum, copper and nickel. The apparatus and method may comprise at least one radiative heater directed at the shell to maintain the steady state temperature of the shell within a selected range of operating temperatures.

    摘要翻译: 描述了可以包括可以包括等离子体形成室的等离子体产生的极紫外(“EUV”)光源多层收集器的装置和方法; 等离子体形成室内的壳体,具有焦点的收集器形状; 壳体具有足够的尺寸和热质量以将工作热量从多层反射器散开,并且在壳体的与焦点相对的一侧上从壳体的表面辐射热量。 壳的材料可以包括选自可以包括碳化硅,硅,Zerodur或ULE玻璃,铝,铍,钼,铜和镍的组的材料。 装置和方法可以包括指向壳体的至少一个辐射加热器,以将壳体的稳态温度维持在所选择的工作温度范围内。

    High repetition rate laser produced plasma EUV light source

    公开(公告)号:US20080197297A1

    公开(公告)日:2008-08-21

    申请号:US11471434

    申请日:2006-06-20

    IPC分类号: G01J3/10

    摘要: An EUV light source apparatus and method are disclosed, which may comprise a pulsed laser providing laser pulses at a selected pulse repetition rate focused at a desired target ignition site; a target formation system providing discrete targets at a selected interval coordinated with the laser pulse repetition rate; a target steering system intermediate the target formation system and the desired target ignition site; and a target tracking system providing information about the movement of target between the target formation system and the target steering system, enabling the target steering system to direct the target to the desired target ignition site. The target tracking system may provide information enabling the creation of a laser firing control signal, and may comprise a droplet detector comprising a collimated light source directed to intersect a point on a projected delivery path of the target, having a respective oppositely disposed light detector detecting the passage of the target through the respective point, or a detector comprising a linear array of a plurality of photo-sensitive elements aligned to a coordinate axis, the light from the light source intersecting a projected delivery path of the target, at least one of the which may comprise a plane-intercept detection device. The droplet detectors may comprise a plurality of droplet detectors each operating at a different light frequency, or a camera having a field of view and a two dimensional array of pixels imaging the field of view. The apparatus and method may comprise an electrostatic plasma containment apparatus providing an electric plasma confinement field at or near a target ignition site at the time of ignition, with the target tracking system providing a signal enabling control of the electrostatic plasma containment apparatus. The apparatus and method may comprise a vessel having and intermediate wall with a low pressure trap allowing passage of EUV light and maintaining a differential pressure across the low pressure trap. The apparatus and method may comprise a magnetic plasma confinement mechanism creating a magnetic field in the vicinity of the target ignition site to confine the plasma to the target ignition site, which may be pulsed and may be controlled using outputs from the target tracking system.