摘要:
A method and apparatus to transmit pilot subcarriers over uplink channels. The pilot subcarriers includes symbols which hierarchically structured. The symbol includes a first split of at least two fractional frequency reuse (FFR) groups, a second split of a fractional frequency reuse (FFR) group to a distributed resource group and localized resource group and a third split of said distributed resource group and localized resource group into plurality of subchannels.
摘要:
A novel pilot method employs a cluster having a particular arrangement of pilot sub-carriers to optimize transmissions under 802.16 m, or WiMAX-II. The optimally configured cluster features equal pilot density per OFDM symbol, two or more pilot sub-carriers per cluster, and interlaced pilot sub-carriers, which enables the base stations to successfully boost the pilot sub-carriers, for optimum performance.
摘要:
A novel pilot method employs a cluster having a particular arrangement of pilot sub-carriers to optimize transmissions under 802.16m, or WiMAX-II. The optimally configured cluster features equal pilot density per OFDM symbol, two or more pilot sub-carriers per cluster, and interlaced pilot sub-carriers, which enables the base stations to successfully boost the pilot sub-carriers, for optimum performance.
摘要:
Examples are disclosed for determining, at a base station, separate open loop power control factors for one or more uplink interference patterns based on received time division duplex configuration information received from one or more neighboring base stations. In some examples, the separate open loop power control factors may be communicated to wireless devices coupled with the base station. For these examples, the wireless devices may adjust transmit power controls responsive to receiving the separate open loop power control factors. Other examples are described and claimed.
摘要:
Technology is discussed for self-optimization approaches within wireless networks to optimize networks for energy efficiency, load capacity, and/or mobility, together with new, supporting channel state measurements and handover techniques. New, Channel State Information-Reference Signals (CSI-RSs) for yet-to-be-configured Cell-IDentifications (Cell-IDs) can be used to determine whether adjacent transmission cells can provide coverage for transmission cells that can be switched off for energy efficiency during formation of a Single Frequency Network (SFN). New approaches are also discussed to facilitate mobility within such a network. The new CSI-RSs and mobility approaches can also be used to split up such a SFN when changing load demands so require. Additionally, such new approaches can be used to create a SFN with a common Cell-ID where high mobility is required, such as near a roadway, and to break it up where high capacity is required, such as during a period of traffic congestion.
摘要:
Various embodiments include devices, methods, computer-readable media and system configurations for reference signal generation and resource allocation. In various embodiments, a wireless communication device may include a control module, which may be operated by a processor and configured to transmit to a user equipment (“UE”) device, over a wireless communication interface, a parameter specific to the UE device; wherein the parameter is usable by the eNB to generate a user equipment-specific reference signal (“UE-RS”) to be sent to the UE device. The parameter may be usable by the UE device to identify the UE-RS to facilitate demodulation of multiple-input, multiple-output communications. In various embodiments, a control module may be configured to store, in memory, priority rules, and to determine a UE-RS resource allocated to another UE device based on a UE-RS resource allocated to the UE device and the priority rules.
摘要:
Technology for performing multiple timing advances in a carrier aggregation communication system is disclosed. A method comprises communicating a random access preamble from a UE to an eNodeB via a PCell associated with a selected component carrier of the carrier aggregation. A Random Access Response (RAR) is received at the UE from the eNodeB for the PCell. The RAR contains a timing advance adjustment instructing the UE to adjust a timing of a PCell wireless communication. A request is received at the UE to adjust a timing of an SCell communication. A random access preamble is communicated to the UE via the SCell. An RAR is received at the UE from the eNodeB for the SCell to adjust a timing advance of the SCell wireless communication.
摘要:
Technology for forming carrier aggregation timing advance groups in a heterogeneous network (HetNet) is disclosed. One method comprises assigning at least a first component carrier cell to one of a first timing advance group and a second timing advance group. At least a second component carrier cell is assigned to one of the first timing advance group and the second timing advance group. A separate timing advance index value is selected for each of the first and second timing advance groups. The timing advance index value is used to refer to the timing advance group in signaling in the HetNet.
摘要:
Briefly, in accordance with one or more embodiments, a base transceiver station such as an Enhanced Node B allocates a first bandwidth for operation with a first set of remote devices which may comprise user equipment (UE), and allocates at least one or more bandwidth segments outside of the first bandwidth for operation with a second set of remote devices which mug comprise user equipment (UE). Remote devices of the first set are capable of operating within the first bandwidth, and remote devices of the second set are capable of operating within the first bandwidth and within the bandwidth segments outside of the first bandwidth. The devices of the first set comprise legacy devices, and devices of the second set comprise advanced devices.
摘要:
Embodiments of an apparatus and method for coding of wireless transmissions channel are generally described herein. Other embodiments may be described and claimed.