摘要:
An electrification control electrode B is installed at a measured or inspected specimen side of an electrification control electrode A, and a constant voltage is applied from an electrification control electrode control portion of an electrification control electrode B according to an electrification state of a specimen, whereby a variation of an electrification state and a potential barrier of a specimen surface formed before an inspection is suppressed. A retarding potential is applied by an electrification control electrode, and the electrification control electrode B is disposed below the electrification control electrode A adjusted to equal potential to a specimen. As a result, it is possible to adjust the amount that secondary electrons emitted from a specimen such as a wafer to which a primary electron beam is irradiated return to a specimen, and thus it is possible to stably maintain an inspection condition of high sensitivity during an inspection.
摘要:
Efficiency of a charging processing of an insulator sample is improved. And, an electron optical system is adjusted according to a contact resistance value of the insulator sample. Breakdown of a sample is performed before the charging processing, and then, the charging processing is performed. A control parameter of the electron optical system is selected using a result of a resistance value of the sample for checking the breakdown.
摘要:
Efficiency of a charging processing of an insulator sample is improved. And, an electron optical system is adjusted according to a contact resistance value of the insulator sample. Breakdown of a sample is performed before the charging processing, and then, the charging processing is performed. A control parameter of the electron optical system is selected using a result of a resistance value of the sample for checking the breakdown.
摘要:
Provided is a sample observing method wherein the effect on throughput is minimized, and a pattern profile can be obtained at high accuracy even in a complicated LSI pattern, regardless of the scanning direction of an electron beam. In the sample observing method, the presence or absence of an edge parallel to a scanning direction (707) of an electron beam is judged regarding an edge (708) of a pattern to be observed (S702); if the edge is present, an area in the vicinity of the pattern edge is designated as a local pre-dose area (709) (S703); a local pre-dose of an electron beam is performed, so that the initial charged state is controlled not to return secondary electrons generated by irradiation of an electron beam when an image is captured, to the surface of a sample.
摘要:
In the present invention, the structure of an electrification control electrode is changed from a grid type to a slit type and thereby shadows are not formed when a wafer is irradiated with a beam. Further, a beam forming slit is disposed ahead of an electrification control slit, thus the electrification control slit is prevented from being irradiated with an electron beam for preliminary electrification, and thereby secondary electrons which disturb the control of the electrification are inhibited from being generated. The shape of the slit is designed so that the strength of an electron beam may gradually decrease toward both the ends of an electron beam irradiation region in the longitudinal direction thereof. Furthermore, a preliminary static eliminator to remove or reduce the unevenness in an electrification potential distribution which has undesirably been formed earlier is disposed.
摘要:
A charged particle beam apparatus is provided which has high resolving power and a wide scanning region (observation field of view). The apparatus has a unit for adjusting the focus, a unit for adjusting astigmatism, a unit for controlling and detecting scanning positions and a controller operative to control the focus adjustment and astigmatism adjustment at a time in interlocked relation to the scanning positions, thereby assuring compatibility between the high resolving power and the observation view field of a wide area.
摘要:
In the present invention, at the time of measuring, using a CD-SEM, a length of a resist that shrinks when irradiated with an electron beam, in order to highly accurately estimate a shape and dimensions of the resist before shrink, a shrink database with respect to various patterns is previously prepared, said shrink database containing cross-sectional shape data obtained prior to electron beam irradiation, a cross-sectional shape data group and a CD-SEM image data group, which are obtained under various electron beam irradiation conditions, and models based on such data and data groups, and a CD-SEM image of a resist pattern to be measured is obtained (S102), then, the CD-SEM image and data in the shrink database are compared with each other (S103), and the shape and dimensions of the pattern before the shrink are estimated and outputted (S104).
摘要:
A charged particle beam device including a function for measuring localized static charges on a sample. A primary charged particle beam scans a sample positioned in a mirror state to acquire an image. The acquired image may be an image of the sample or may be an image of a structural component in the charged particle optical system. The acquired image is compared with a standard sample image and the localized static charge is measured.
摘要:
Electrification affected on a surface of a sample which is caused by irradiation of a primary charged particle beam is prevented when plural frames are integrated to obtain an image of a predetermined area of the sample in a charged particle beam apparatus. The predetermined area of the sample is scanned with a primary electron beam from an electron gun, and plural frames are generated and integrated while detecting generated secondary electrons with a detector to obtain the image of the predetermined area. If it is determined by a detection signal of the detector that an electrification amount at the predetermined area becomes a specified value when generating plural frames, an electricity removal voltage is applied to a boosting electrode to remove or reduce the electrification, prior to generation of the next frame. Accordingly, the signal-to-noise ratio of the image obtained by integrating plural frames can be improved.
摘要:
A pattern inspecting technique, depending on the kind of materials, can reduce damage including shrinkage to materials when the materials are prone to such damage as shrinkage and spoilage caused by electron beam irradiation. This is accomplished by scanning a sample with a primary electron beam, detecting secondary electrons generated, or electrons reflected from the semiconductor device, or both the former and latter electrons, and converting the electrons into signals, and transforming the signals into an image, displaying the image, and detecting defective spots in the circuit pattern of the sample. The irradiation density (dose per unit area) of the electron beam is monitored and limited depending on the kind of material of the circuit pattern under inspection and the inspecting conditions, and damage, such as shrinkage and spoilage to the materials during electron beam irradiation, is reduced to an allowable range.