摘要:
The present invention relates to a charge sensing device for sensing charge variations in a charge storage area including: a TFET having at least one sense gate; a capacitive coupling for coupling the charge storage area with the sense gate.
摘要:
Large area, fast frame rate, charge coupled devices (CCDs) are provided. Interline transfer CCDs can have interleaved pinned photodiodes and vertical shift registers. The interline transfer CCDs are ideal for producing high frame rate video images from a continuous light source. The photodiodes transfer charge indicative of the previous video frame to an adjacent vertical shift register with little or no lag, while light from the current video frame is integrating in the photodiodes. The charge signals only have to travel a short distance from a photodiode to an adjacent vertical shift register. The charge signals indicative of each video frame are then shifted out of the vertical shift registers. Each vertical shift register has a doping gradient that increases the charge transfer rate. All of these factors provide a fast and efficient video frame rate, even in a large area CCD.
摘要:
A method, suitable for forming metal contacts on a semiconductor substrate at positions for defining radiation detector cells, includes the steps of forming one or more layers of material on a surface of the substrate with openings to the substrate surface at the contact positions; forming a layer of metal over the layer(s) of material and the openings; and removing metal overlying the layer(s) of material to separate individual contacts. Optionally, a passivation layer to be left between individual contacts on the substrate surface may be applied. Etchants used for removing unwanted gold (or other contact matter) are preferably prevented from coming into contact with the surface of the substrate, thereby avoiding degradation of the resistive properties of the substrate.
摘要:
An integrated circuit comprises a charge coupled device and an MOS transistor. The charge coupled device has a lower and an upper gate electrode on the substrate. The insulating film between the substrate and the electrodes comprises silicon nitride. The insulating film between the electrodes is formed by thermal oxidizing the lower gate electrode using the silicon nitride film as a mask.
摘要:
The invention relates to a solid-state imaging device in which a light-sensitive element region and a charge transfer region are separately formed on a semiconductor substrate of a first conductivity type by implanting an impurity of a second conductivity type into the substrate. A channel region is formed between these two regions by implanting an impurity of the first conductivity type into the substrate. Next, charge transfer electrodes made of a light-proof material are formed on the light-sensitive element region and the charge transfer region, with insulating films thereunder.An alloy of a high-melting-point metal and silicon is used in the construction of the charge transfer electrodes, and this alloy is subjected to high-temperature processing in an atmosphere of O.sub.2.
摘要:
A charge coupled device is disclosed which includes a plurality of stages having increased charge storage capacity and decreased leakage current. Each stage is comprised of a semiconductor substrate of a first-type conductivity having a first surface. An insulating layer of uniform thickness lies on the first surface. A charge transfer channel extends through each stage. Phase electrodes lie on the insulating layer transversely to the channel. The semiconductor substrate under each phase electrode is divided into a barrier region and an adjacent well region bounded by the channel. A shallow dopant layer of the first-type conductivity lies in each of the barrier regions relatively near to the first surface. A buried channel dopant layer of a second-type conductivity lies in the well regions and the barrier regions under and relatively near to the shallow first-type conductivity dopant layer. Additionally, an enhanced first-type conductivity dopant layer lies in the well regions and the barrier regions under and relatively near to the buried channel dopant layer of second-type conductivity.
摘要:
The preferred embodiment of a method of making a buried channel CCD starts with a body of P type semiconductor material over which an oxide layer and a photoresist are deposited. Openings are formed to expose regions of the body surface where drains are to be formed and N type impurity atoms are implanted through the openings. The openings are then enlarged to expose an additional area of the surface surrounding the drains and P type atoms are implanted through the enlarged openings to form channel stops. Afterward, the surface of the body is exposed and N type atoms are implanted to form buried channel regions on each side of the channel stops and to convert a thin layer of the channel stops to lightly doped compensation regions extending between the drains and the buried channel regions.
摘要:
The invention is the structure and process for making a bucket brigade device which comprises the merger of an MOS capacitor with an MOSFET device to form the charge transfer cell. A first thin N-type region is implanted at a first concentration in a portion of the P-type channel region of an FET device adjacent to the drain diffusion. A second region is implanted with N-type dopant at a second concentration less than the first concentration, adjacent to and continuous with the first implanted region. The N-type concentration in the second region is just sufficient to compensate for the P-type background doping in the channel region. This structure increases the charge transfer efficiency for the cell and reduces its sensitivity of the threshold voltage to the source-drain voltage. The gate for the device has a substantial overlap over the drain and a minimal overlap over the source and the gate to drain capacitance per unit area is maximized by maintaining a uniformly thin oxide layer across the gate region.
摘要:
The specification describes a self-aligning masking technique for the fabrication of charge coupled device-metal oxide semiconductor (CCD/MOS) transistor combinations. Both the CCD devices and the output MOS transistors are formed on the same semiconductor substrate during the same processing steps. Two layers of polycrystalline silicon, isolated from each other by a layer of dielectric material and isolated from the semiconductor substrate by another dielectric layer are used to form two sets of partially overlapping semiconductor strips. These strips and predetermined portions of the substrate are then doped, with a conductivity determining impurity opposite the conductivity type of the substrate. This process produces two self-aligned sets of gate electrodes for a two-phase or a four-phase CCD device and also produces two output self-aligned gate field effect transistors at the end of the CCD array.
摘要:
Process for manufacturing two-phase charge coupled devices (CCDs) having marginally overlapping phase electrodes and utilizing a single insulating material. Offset self-alignment techniques are used to achieve accurate location of ion implanted potential well or potential barrier regions to achieve the required asymmetry of potential wells (or threshold voltages) in each gate region of the CCD with small bit or charge storage element sizes leading to structures having a high packing density. Fabrication of surface and buried channel structures is described.