Abstract:
A novel precious metal doped porous metal catalyst is disclosed. The precious metal is present in from 0.01 to 1.5 weight percent and distributed throughout the particles of porous metal to provide a surface to bulk ratio distribution of not greater than 60. The present invention is further directed to a process of forming said doped catalyst and to improved processes of catalytic hydrogenation of organic compounds.
Abstract:
An oxidative halogenation process involving contacting a hydrocarbon, for example, ethylene, or a halogenated hydrocarbon with a source of halogen, such as hydrogen chloride, and a source of oxygen in the presence of a catalyst so as to form a halocarbon, preferably a chlorocarbon, having a greater number of halogen substituents than the starting hydrocarbon or halogenated hydrocarbon, for example, 1,2-dichloroethane. The catalyst is a novel composition comprising copper dispersed on a porous rare earth halide support, preferably, a porous rare earth chloride support. A catalyst precursor composition comprising copper dispersed on a porous rare earth oxyhalide support is disclosed. Use of the porous rare earth halide and oxyhalide as support materials for catalytic components is disclosed.
Abstract:
A catalyst system and method for making carbon fibrils is provided which comprises a catalytic amount of an inorganic catalyst comprising nickel and one of the following substances selected from the group consisting of chromium; chromium and iron; chromium and molybdenum; chromium, molybdenum, and iron; aluminum; yttrium and iron; yttrium, iron and aluminum; zinc; copper; yttrium; yttrium and chromium; and yttrium, chromium and zinc. In a further aspect of the invention, a catalyst system and method is provided for making carbon fibrils which comprises a catalytic amount of an inorganic catalyst comprising cobalt and one of the following substances selected from the group consisting of chromium; aluminum; zinc; copper; copper and zinc; copper, zinc, and chromium; copper and iron; copper, iron, and aluminum; copper and nickel; and yttrium, nickel and copper.
Abstract:
The present invention provides a method of producing a CuZnAlZr oxide catalyst consisting of reacting an aqueous NaOH solution and aqueous NACO3 solution with a mixture of aqueous solutions of each nitrate of Cu, Zn, Al, and Zr, producing a precipitate by coprecipitation, aging, filtering, washing and drying this precipitate to prepare a catalyst precursor consisting of a CuZnAlZr layered double hydroxide, and then obtaining a CuZnAlZr oxide by calcining this precursor in an air ambient atmosphere, a CuZnAlZr oxide catalyst, a CuZnZrCe oxide catalyst, a CoCuZnAl oxide catalyst for producing hydrogen by oxidative steam reforming of methanol, and methods of producing hydrogen gas consisting of converting methanol to hydrogen gas by oxidative steam reforming in the presence of air and steam using these oxide catalysts.
Abstract:
A CO-selective catalyst comprises a catalytic material, wherein the catalytic material is selected from the group consisting of Pt, Pd, Rh, Ir, Os, Ru, Ta, Zr, Y, Ce, Ni, Cu, and oxides, alloys, compounds, and combinations comprising at least one of the foregoing; a modifying agent selected from the group consisting of Pb, Bi, Ge, Si, Sb, As, P, and combinations comprising at least one of the foregoing; and a support. In one embodiment, the method for forming the CO selective catalyst comprises combining a catalytic material and a support with about 2 to about 25 atomic percent of a modifying agent, based on the total surface atoms of the catalytic material, to form a modified catalyst-containing support and disposing the modified catalyst-containing support on or into a substrate.
Abstract:
A structured catalyst for selective reduction of nitrogen oxides with ammonia using an ammonia-supplying compound. The catalyst is preferably used for exhaust gas treatment of diesel vehicles powered by diesel motors. The catalyst is characterized by the fact that it contains a reduction catalyst for selective reduction of nitrogen oxides with ammonia and a hydrolysis catalyst for the hydrolysis of urea, where the hydrolysis catalyst is applied in the form of a coating onto the reduction catalyst. By this arrangement of the two catalytic functions in one catalyst the exhaust gas system can be made very compactly and space saving. Moreover, advantageous synergistic effects result from the direct contact of the hydrolysis catalyst and the reduction catalyst.
Abstract:
A completely metallic catalyst for the oxidation of mixtures in the gaseous phase which contain carbon monoxide, hydrocarbons and/or soot, has a surface doped with a metallic element and is subjected to a second thermal treatment in an oxygen-containing atmosphere.
Abstract:
A process for making aldehydes involving: (a) providing a fatty alcohol; (b) providing an oxidic copper/zinc catalyst; and (c) continuously dehydrogenating the fatty alcohol, in the presence of the oxidic copper/zinc catalyst, at a temperature of from about 200 to 280null C. and a pressure of from about 10 mbar to 1 bar.
Abstract:
Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product. Such sorbents can also be utilized for the treatment of other sulfur-containing streams such as diesel fuels.
Abstract:
The present invention relates to a process for the preparation of iron-doped ruthenium catalysts supported on carbon, and their use for the selective liquid phase hydrogenation of carbonyl compounds to give the corresponding alcohols, in particular for the hydrogenation of citral to give geraniol or nerol or of citronellal to give citronellol.