Abstract:
A vertical semiconductor device (e.g. a vertical power device, an IGBT device, a vertical bipolar transistor, a UMOS device or a GTO thyristor) is formed with an active semiconductor region, within which a plurality of semiconductor structures have been fabricated to form an active device, and below which at least a portion of a substrate material has been removed to isolate the active device, to expose at least one of the semiconductor structures for bottom side electrical connection and to enhance thermal dissipation. At least one of the semiconductor structures is preferably contacted by an electrode at the bottom side of the active semiconductor region.
Abstract:
Process for manufacturing a semiconductor power device, wherein a trench (8) is formed in a semiconductor body (2) having a first conductivity type; the trench is annealed for shaping purpose (8a) ; and the trench (8a) is filled with semiconductor material via epitaxial growth so as to obtain a first column (9) having a second conductivity type. The epitaxial growth is performed by supplying a gas containing silicon and a gas containing dopant ions of the second conductivity type in presence of a halogenide gas and occurs with uniform distribution of the dopant ions. The flow of the gas containing dopant ions is varied according to a linear ramp during the epitaxial growth; in particular, in the case of selective growth of the semiconductor material in the presence of a hard mask, the flow decreases; in the case of non-selective growth, in the absence of hard mask, the flow increases .
Abstract:
Silicon carbide high voltage semiconductor devices and methods of fabricating such devices are provided. The devices include a voltage blocking substrate. Insulated gate bipolar transistors are provided that have a voltage blocking substrate. Planar and beveled edge termination may be provided.
Abstract:
A quick punch-through integrated gate bipolar transistor (IGBT) includes a drift region and a gate. The drift region has a drift region dopant concentration and a drift region thickness. The gate has a gate capacitance. The drift region dopant concentration, drift region thickness and gate capacitance are adjusted dependent at least in part upon the PNP gain of the IGBT to maintain the potential difference between the gate and emitter at a level greater than the IGBT threshold voltage when the collector voltage reaches the bus voltage. This insures that the hole carrier concentration remains approximately equal to or greater than the drift region dopant concentration when the depletion layer punches through to the buffer region during the turn-off delay. Thus, the collector voltage overshoot and the rate of change of voltage and current are controlled, and electromagnetic interference is reduced, during turn off.
Abstract:
A method is provided for forming a power semiconductor device. The method begins by providing a substrate of a first or second conductivity type and then forming a voltage sustaining region on the substrate. The voltage sustaining region is formed by depositing an epitaxial layer of a first conductivity type on the substrate and forming at least one trench in the epitaxial layer. A first layer of polysilicon having a second dopant of the second conductivity type is deposited in the trench. The second dopant is diffused to form a doped epitaxial region adjacent to the trench and in the epitaxial layer. A second layer of polysilicon having a first dopant of the first conductivity type is subsequently deposited in the trench. The first and second dopants respectively located in the second and first layers of polysilicon are interdiffused to achieve electrical compensation in the first and second layers of polysilicon. Finally, at least one region of the second conductivity type is formed over the voltage sustaining region to define a junction therebetween.
Abstract:
A quick punch-through integrated gate bipolar transistor (IGBT) includes a drift region and a gate. The drift region has a drift region dopant concentration and a drift region thickness. The gate has a gate capacitance. The drift region dopant concentration, drift region thickness and gate capacitance are adjusted dependent at least in part upon the PNP gain of the IGBT to maintain the potential difference between the gate and emitter at a level greater than the IGBT threshold voltage when the collector voltage reaches the bus voltage. This insures that the hole carrier concentration remains approximately equal to or greater than the drift region dopant concentration when the depletion layer punches through to the buffer region during the turn-off delay. Thus, the collector voltage overshoot and the rate of change of voltage and current are controlled, and electromagnetic interference is reduced, during turn off.
Abstract:
The epitaxial silicon junction receiving layer of a power semiconductor device is formed of upper and lower layers. The lower layer has a resistivity of more than that of the upper layer and a thickness of more than that of the upper layer. The total thickness of the two layers is less than that of a single epitaxial layer that would be used for the same blocking voltage. P-N junctions are formed in the upper layer to define a vertical conduction power MOSFET device. The on-resistance is reduced more than 10 % without any blocking voltage reduce. The upper epitaxial layer can be either by direct second layer deposition or by ion implantation of a uniform epitaxial layer followed by a driving process.