Abstract:
Techniques are disclosed for methods and apparatuses for increasing the breakdown voltage while substantially reducing the voltage leakage of an electrostatic chuck at temperatures exceeding about 300 degrees Celsius in a processing chamber.
Abstract:
Methods and apparatus for forming a sacrificial during a novel process sequence of lithography and photoresist patterning are provided. In one embodiment, a method of processing a substrate having a resist material and an anti-reflective coating material thereon includes depositing an organic polymer layer over the surface of the substrate inside a process chamber using a CVD technique. The CVD technique includes flowing a monomer into a processing region of the process chamber, flowing an initiator into the processing region through one or more filament wires heated to a temperature between about 200C and about 450C, and forming the organic polymer layer. In addition, the organic polymer layer is ashable and can be removed from the surface of the substrate when the resist material is removed from the surface of the substrate.
Abstract:
Embodiments of the invention generally relate to methods of dry stripping boron-carbon films. In one embodiment, alternating plasmas of hydrogen and oxygen are used to remove a boron-carbon film. In another embodiment, co-flowed oxygen and hydrogen plasma is used to remove a boron-carbon containing film. A nitrous oxide plasma may be used in addition to or as an alternative to either of the above oxygen plasmas. In another embodiment, a plasma generated from water vapor is used to remove a boron-carbon film. The boron-carbon removal processes may also include an optional polymer removal process prior to removal of the boron-carbon films. The polymer removal process includes exposing the boron-carbon film to NF 3 to remove from the surface of the boron-carbon film any carbon-based polymers generated during a substrate etching process.
Abstract:
Embodiments of the invention generally provide a method of forming an air gap between conductive elements of a semiconductor device, wherein the air gap has a dielectric constant of approximately 1. The air gap may generally be formed by depositing a sacrificial material between the respective conductive elements, depositing a porous layer over the conductive elements and the sacrificial material, and then stripping the sacrificial material out of the space between the respective conductive elements through the porous layer, which leaves an air gap between the respective conductive elements. The sacrificial material may be, for example, a polymerized alpha terpinene layer, the porous layer may be, for example, a porous carbon doped oxide layer, and the stripping process may utilize a UV based curing process, for example.
Abstract:
The present invention generally provides an apparatus and method for reducing defects on films deposited on semiconductor substrates. One embodiment of the present invention provides a method for depositing a film on a substrate. The method comprises treating the substrate with a first plasma configured to reduce pre-existing defects on the substrate, and depositing a film comprising silicon and carbon on the substrate by applying a second plasma generated from at least one precursor and at least one reactant gas.
Abstract:
Techniques are disclosed for methods and apparatuses of an electrostatic chuck suitable for operating at high operating temperatures. In one example, a substrate support assembly is provided. The substrate support assembly includes a substantially disk-shaped ceramic body having an upper surface, a cylindrical sidewall, and a lower surface. The upper surface is configured to support a substrate thereon for processing the substrate in a vacuum processing chamber. The cylindrical sidewall defines an outer diameter of the ceramic body. The lower surface is disposed opposite the upper surface. An electrode is disposed in the ceramic body. A circuit is electrically connected to the electrode. The circuit includes a DC chucking circuit, a first RF drive circuit, and a second RF dive circuit. The DC chucking circuit, the first RF drive circuit and the second RF drive circuit are electrically coupled with the electrode..
Abstract:
Embodiments described herein relate to a faceplate for improving film uniformity. A semiconductor processing apparatus includes a pedestal, an edge ring and a faceplate having distinct regions with differing hole densities. The faceplate has an inner region and an outer region which surrounds the inner region. The inner region has a greater density of holes formed therethrough when compared to the outer region. The inner region is sized to correspond with a substrate being processed while the outer region is sized to correspond with the edge ring.
Abstract:
Methods are provided for depositing a stack of film layers for use in vertical gates for 3D memory devices, by depositing a sacrificial nitride film layer at a sacrificial film deposition temperature greater than about 550 °C; depositing an oxide film layer over the nitride film layer, at an oxide deposition temperature of about 600 °C. or greater; repeating the above steps to deposit a film stack having alternating layers of the sacrificial films and the oxide films; forming a plurality of holes in the film stack; and depositing polysilicon in the plurality of holes in the film stack at a polysilicon process temperature of about 700 °C. or greater, wherein the sacrificial film layers and the oxide film layers experience near zero shrinkage during the polysilicon deposition. Flash drive memory devices may also be made by these methods.
Abstract:
Embodiments described herein relate to materials and processes for patterning and etching features in a semiconductor substrate. In one embodiment, a method of forming a composite amorphous carbon layer for improved stack defectivity on a substrate is provided. The method comprises positioning a substrate in a process chamber, introducing a hydrocarbon source gas into the process chamber, introducing a diluent source gas into the process chamber, introducing a plasma-initiating gas into the process chamber, generating a plasma in the process chamber, forming an amorphous carbon initiation layer on the substrate, wherein the hydrocarbon source gas has a volumetric flow rate to diluent source gas flow rate ratio of 1:12 or less; and forming a bulk amorphous carbon layer on the amorphous carbon initiation layer, wherein a hydrocarbon source gas used to form the bulk amorphous carbon layer has a volumetric flow rate to a diluent source gas flow rate of 1:6 or greater to form the composite amorphous carbon layer.
Abstract:
Methods are provided for forming a structure that includes an air gap In one embodiment, a method is provided for forming a damascene structure compnses depositing a porous low dielectric constant layer by a method including reacting an organosilicon compound and a porogen-providing precursor, depositing a porogen-containing material, and removing at least a portion of the porogen -containing matenal, depositing an organic layer on the porous low dielectric constant layer by reacting the porogen-providing precursor, forming a feature defintion in the organic and dielectric constant layer, filling the feature definition with a conductive material, depositing a mask layer on the organic layer, forming apertures in the mask layer to expose the organic layer, removing a portion or all of the organic layer through the apertures, and forming an air gap adjacent the conductive matenal.