Abstract:
La présente invention a pour objet un procédé de gestion du démarrage d'un moteur thermique d'un système de motorisation hybride comprenant un moteur thermique et une machine électrique (BSG), ainsi qu'un arbre moteur (X), la machine électrique (BSG) produisant un couple pour assurer le démarrage du moteur thermique et entraîner l'arbre moteur (X) au moins durant une phase initiale du démarrage, ledit procédé présentant une phase transitoire de démarrage durant laquelle le moteur thermique entraîne l'arbre moteur (X) et au terme de laquelle la machine électrique (BSG) est stoppée, la machine électrique (BSG) étant régulée, durant la phase initiale (ELEC) et durant la phase transitoire, avec une première consigne de régime moteur (N_SP_IS), ladite phase transitoire débutant lorsque l'arbre moteur (X) atteint la première consigne de régime moteur (N_SP_IS) de façon stabilisée, le contrôle du couple produit par la machine électrique (BSG) durant ladite phase transitoire de démarrage étant configuré pour que la machine électrique (BSG) soit stoppée dès lors ledit contrôle détermine que le couple produit par la machine électrique (BSG) tend vers un couple nul.
Abstract:
A vehicular glide solver receives and optimizes a requested route using vehicular optimization criteria by analyzing at least one data set pertaining to the requested route, and provides a vehicular glide schedule for discrete points along the requested route. The solver dynamically adjusts the vehicular glide schedule in response to a change in the data set. An elevatier receives a request for a data point and constructs and selects at least one polygon based on at least one quality condition and interpolates the requested data point using the at least one selected polygon. A glide controller includes a glide solver and a glide control interface. The glide solver generates at least one vehicular glide schedule including a plurality of discretized targets. The solver generates vehicular glide control outputs corresponding to discretized targets. The glide control interface outputs the control outputs, intended to result in a performance adjustment of a vehicle.
Abstract:
A hybrid vehicle includes an engine (10), a first motor generator (MG1), a second motor generator (MG2), a transmission unit (power transmission unit) (40), a differential unit (50), a clutch (CS) and a mechanical oil pump (501). The hybrid vehicle is able to switch between series-parallel mode in which power of the engine is transmitted via the transmission unit and the differential unit and series mode in which power of the engine is transmitted via the clutch. The differential unit (50) is a planetary gear mechanism including a sun gear (S2) connected to the first motor generator (MG1), a ring gear (R2) connected to the second motor generator (MG2), and a carrier (CA2) connected to a ring gear (R1) that is an output element of the transmission unit (40). The mechanical oil pump (501) is driven by power that is transmitted from the carrier (CA2) of the differential unit.
Abstract:
When there is an abnormality in communications between a motor ECU (40) and an HVECU (70) in an automobile, the motor ECU (40) controls a motor (MG2) such that creep torque or a given torque larger than the creep torque is delivered from the motor (MG2). Thus, when there is an abnormality in communications between the HVECU (70) and the motor ECU (40), the automobile is able to run in a limp home mode.
Abstract:
Die Erfindung betrifft einen Hybridantrieb eines Kraftfahrzeugs (2), mit einem Verbrennungsmotor (3) und einer elektrischen Maschine (29), die in einem Antriebsstrang (28) des Kraftfahrzeugs (2) angeordnet sind. Der Antriebsstrang weist (28) ein Getriebe (18) auf. Die elektrische Maschine (29) ist in dem Antriebsstrang (28) zwischen dem Verbrennungsmotor (3) und dem Getriebe (18) angeordnet. Ferner ist die elektrische Maschine (29) mit dem Verbrennungsmotor (3) mittels eines ersten lösbaren formschlüssigen Kupplungselements (34) koppelbar und mit dem Getriebe (18) mittels eines zweiten formschlüssigen Kupplungselements (35) koppelbar.
Abstract:
A control system for a vehicle, the control system includes a selectable one-way clutch, a motor, and an electronic control unit. The electronic control unit is configured to (i) execute rotation control to control the motor such that negative differential rotation changes into positive differential rotation when the selectable one-way clutch is switched from a disengaged state to an engaged state while differential rotation of the selectable one-way clutch is negative and (ii) initiate engagement control by a switching mechanism such that a projecting operation of the selectable one-way clutch is completed while the differential rotation is negative.
Abstract:
A control system for a vehicle, the control system includes a selectable one-way clutch, a motor, and an electronic control unit. The electronic control unit is configured to (i) execute rotation control to control the motor such that negative differential rotation changes into positive differential rotation when the selectable one-way clutch is switched from a disengaged state to an engaged state while differential rotation of the selectable one-way clutch is negative and (ii) initiate engagement control by a switching mechanism such that a projecting operation of the selectable one-way clutch is completed while the differential rotation is negative.
Abstract:
In a method for control a vehicle with a drive system comprising an output shaft of a combustion engine and a planetary gear with a first (9) and a second (30) electrical machine, connected via their rotors (9b, 32) to the components of the planetary gear, the vehicle is started by controlling the first electrical machine to achieve a torque thereof, so that the requested torque is trans¬ mitted to the planetary gear's output shaft, and controlling the second electrical machine to achieve a torque, so that the de¬ sired power to electrical auxiliary aggregates and/or loads in the vehicle, and/or electric energy storage means, if present in the vehicle, for exchange of electric energy with the first and second electrical machine is achieved.
Abstract:
Procédé de commande du démarrage du moteur thermique (3) d'un groupe motopropulseur hybride comportant un moteur thermique (3) et une machine électrique d'entraînement (7), deux arbres primaires concentriques (1, 6) couplés respectivement au moteur thermique (3) et à la machine électrique (7), au moins un pignon de descente (8, 9) de chaque arbre primaire (1, 6) sur un arbre secondaire -10) lié aux roues du véhicule, et un moyen de couplage (5) des deux arbres primaires (1, 6), caractérisé en ce qu'il comporte les étapes suivantes: -couplage des deux arbres primaires, -inhibition de l'injection de carburant du moteur thermique, -lancement du moteur thermique par la machine électrique, -synchronisation en régime du moteur thermique et de la machine électrique sans injection de carburant, -activation de l'injection de carburant, -coupure de la machine électrique et découplage des deux arbres primaires.