Abstract:
Techniques are disclosed for forming transistors on the same substrate with varied channel materials. The techniques include forming a replacement material region in the substrate, such region used to form a plurality of fins therefrom, the fins used to form transistor channel regions. In an example case, the substrate may comprise Si and the replacement materials may include Ge, SiGe, and/or at least one III-V material. The replacement material regions can have a width sufficient to ensure a substantially planar interface between the replacement material and the substrate material. Therefore, the fins formed from the replacement material regions can also have a substantially planar interface between the replacement material and the substrate material. One example benefit from being able to form replacement material channel regions with such substantially planar interfaces can include at least a 30 percent improvement in current flow at a fixed voltage.
Abstract:
A portion of a bulk silicon (Si) is formed into a fin, having a fin base and, on the fin base, an in-process fin. The fin base is doped Si and the in-process fin is silicon germanium (SiGe). The in-process SiGe fin has a source region and a drain region. Boron is in-situ doped into the drain region and into the source region. Optionally, boron is in-situ doped by forming an epi-layer, having boron, on the drain region and on the source region, and drive-in annealing to diffuse boron in the source region and the drain region.
Abstract:
Embodiments disclosed in the detailed description include metal oxide semiconductor (MOS) isolation schemes with continuous active areas separated by dummy gates. A MOS device includes an active area formed from a material with a work function that is described as either an n-metal or a p-metal. Active components are formed on this active area using materials having a similar work function. Isolation is effectuated by positioning a dummy gate between the active components. The dummy gate is made from a material having an opposite work function relative to the material of the active area. For example, if the active area was a p-metal material, the dummy gate would be made from an n-metal, and vice versa.
Abstract:
A method for fabricating a field effect transistor (FET) device includes forming a plurality of semiconductor fins (302) on a substrate (202), removing a semiconductor fin of the plurality of semiconductor fins from a portion of the substrate, forming an isolation fin (1002) that includes a dielectric material (902) on the substrate on the portion of the substrate, and forming a gate stack (1701) over the plurality of semiconductor fins (302) and the isolation fin (1002).
Abstract:
High voltage three-dimensional devices having dielectric liners and methods of forming high voltage three-dimensional devices having dielectric liners are described. For example, a semiconductor structure includes a first fin active region and a second fin active region disposed above a substrate. A first gate structure is disposed above a top surface of, and along sidewalls of, the first fin active region. The first gate structure includes a first gate dielectric, a first gate electrode, and first spacers. The first gate dielectric is composed of a first dielectric layer disposed on the first fin active region and along sidewalls of the first spacers, and a second, different, dielectric layer disposed on the first dielectric layer and along sidewalls of the first spacers. The semiconductor structure also includes a second gate structure disposed above a top surface of, and along sidewalls of, the second fin active region. The second gate structure includes a second gate dielectric, a second gate electrode, and second spacers. The second gate dielectric is composed of the second dielectric layer disposed on the second fin active region and along sidewalls of the second spacers.
Abstract:
A semiconductor having a first lattice constant is deposited on an exposed sidewall of a relatively small group IV semiconductor substrate fin having a second lattice constant that does not equal the first lattice constant to form a semiconductor fin without any crystal defects resulting from a lattice mismatch between the first lattice constant and the second lattice constant.
Abstract:
A non-planar gate all-around device and method of fabrication thereby are described. In one embodiment, a multi-layer stack is formed by selectively depositing the entire epi-stack in an STI trench. The channel layer is grown pseudomorphically over a buffer layer. A cap layer is grown on top of the channel layer. In an embodiment, the height of the STI layer remains higher than the channel layer until the formation of the gate. A gate dielectric layer is formed on and all-around each channel nanowire. A gate electrode is formed on the gate dielectric layer and surrounding the channel nanowire.