Abstract:
The invention is embodied in an inductively coupled RF plasma reactor including a reactor chamber enclosure defining a plasma reactor chamber and a support for holding a workpiece inside the chamber, a non-planar inductive antenna adjacent the reactor chamber enclosure, the non-planar inductive antenna including inductive elements spatially distributed in a non-planar relative to a plane of the workpiece to compensate for a null in an RF inductive pattern of the antenna, and a plasma source RF power supply coupled to the non-planar inductive antenna. The planar inductive antenna may be symmetrical or non-symmetrical, although it preferably includes a solenoid winding such as a vertical stack of conductive windings. In a preferred embodiment, the windings are at a minimum radial distance from the axis of symmetry while in an alternative embodiment the windings are at a radial distance from the axis of symmetry which is a substantial fraction of a radius of the chamber.
Abstract:
A plasma system which is to be coupled to a power source, the plasma system including a chamber defining an internal cavity in which a plasma is generated during operation; a coil which during operation couples power from the power source into the plasma within the chamber, the coil having first and second terminals; a first capacitor which is coupled between the first terminal and a reference potential; and a second capacitor connected to the second terminal and through which the power source is coupled to the second terminal.
Abstract:
The invention is embodied in an inductively coupled RF plasma reactor including a reactor chamber enclosure defining a plasma reactor chamber and a support for holding a workpiece inside the chamber, a non-planar inductive antenna adjacent the reactor chamber enclosure, the non-planar inductive antenna including inductive elements spatially distributed in a non-planar manner relative to a plane of the workpiece to compensate for a null in an RF inductive pattern of the antenna, and a plasma source RF power supply coupled to the non-planar inductive antenna. The planar inductive antenna may be symmetrical or non-symmetrical, although it preferably includes a solenoid winding such as a vertical stack of conductive windings. In a preferred embodiment, the windings are at a minimum radial distance from the axis of symmetry while in an alternative embodiment the windings are at a radial distance from the axis of symmetry which is a substantial fraction of a radius of the chamber.
Abstract:
An improved method of fabricating integrated circuit structures on semiconductor wafers using a plasma-assisted process is disclosed wherein the plasma is generated by a VHF/UHF power source at a frequency ranging from about 50 to about 800 MHz. Low pressure plasma-assisted etching or deposition processes, i.e., processes may be carried out within a pressure range not exceeding about 500 milliTorr; with a ratio of anode to cathode area of from about 2:1 to about 20:1, and an electrode spacing of from about 5 cm. to about 30 cm. High pressure plasma-assisted etching or deposition processes, i.e., processes may be carried out with a pressure ranging from over 500 milliTorr up to 50 Torr or higher; with an anode to cathode electrode spacing of less than about 5 cm. By carrying out plasma-assisted processes using plasma operated within a range of from about 50 to about 800 MHz, the electrode sheath voltages are maintained sufficiently low, so as to avoid damage to structures on the wafer, yet sufficiently high to preferably permit initiation of the processes without the need for supplemental power sources. Operating in this frequency range may also result in reduction or elimination of microloading effects.
Abstract:
A plasma chamber enclosure structure for use in an RF plasma reactor. The plasma chamber enclosure structure being a single-wall dielectric enclosure structure of an inverted cup-shape configuration and having ceiling with an interior surface of substantially flat conical configuration extending to a centrally located gas inlet. The plasma chamber enclosure structure having a sidewall with a lower cylindrical portion generally transverse to a pedestal when positioned over a reactor base, and a transitional portion between the lower cylindrical portion and the ceiling. The transitional portion extends inwardly from the lower cylindrical portion and includes a radius of curvature. The structure being adapted to cover the base to comprise the RF plasma reactor and to define a plasma-processing volume over the pedestal. The structure being formed of a dielectric material of silicon, silicon carbide, quartz, and/or alumina being capable of transmitting inductive power therethrough from an adjacent antenna.
Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
A domed plasma reactor chamber uses an antenna driven by RF energy (LF, MF, or VHF) which is inductively coupled inside the reactor dome. The antenna generates a high density, low energy plasma inside the chamber for etching metals, dielectrics and semiconductor materials. Auxiliary RF bias energy applied to the wafer support cathode controls the cathode sheath voltage and controls the ion energy independent of density. Various magnetic and voltage processing enhancement techniques are disclosed, along with etch processes, deposition processes and combined etch/deposition processed. The disclosed invention provides processing of sensitive devices without damage and without microloading, thus providing increased yields.
Abstract:
A variable RF power splitter including three serially connected inductors (14, 15, 16) powered by an RF power source (11, 12). Two loads (17, 18), between which the RF power is to be split, are connected to ground from two different points in the inductance string. A variable reactance (19) connected to ground from another point in the inductance string controls the RF power splitting.
Abstract:
A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
Abstract:
A support 200 for supporting a substrate 50 in a plasma process chamber 20, comprises a dielectric member 205 having an electrode embedded therein, and having a receiving surface for receiving the substrate. An electrical conductor 210 supporting the dielectric member 205, comprises a peripheral portion 228 extending beyond the electrode in the dielectric member. A voltage supply 158 supplies an RF bias voltage to the electrode embedded in the dielectric member 205 to capacitively couple RF power from the electrode to the conductor 210, and optionally, supplies a DC voltage to electrostatically hold the substrate 50 to the dielectric member. A collar ring 230 on the peripheral portion 228 of the conductor 210, comprises a RF electrical field absorption that is sufficiently low to capacitively couple RF power from the peripheral portion of the conductor through the collar ring to a plasma sheath that extends; above the collar ring, during use of the chuck in the plasma process chamber 20. The extended RF field around the perimeter of the substrate 130 provides enhanced and more uniform plasma processing of the substrate.