Formation of SiN thin films
    1.
    发明授权

    公开(公告)号:US10410857B2

    公开(公告)日:2019-09-10

    申请号:US14834290

    申请日:2015-08-24

    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyl halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.

    DEPOSITION OF BORON AND CARBON CONTAINING MATERIALS
    7.
    发明申请
    DEPOSITION OF BORON AND CARBON CONTAINING MATERIALS 有权
    含硼和含碳材料的沉积

    公开(公告)号:US20150287591A1

    公开(公告)日:2015-10-08

    申请号:US14686595

    申请日:2015-04-14

    Abstract: Methods of depositing boron and carbon containing films are provided. In some embodiments, methods of depositing B, C films with desirable properties, such as conformality and etch rate, are provided. One or more boron and/or carbon containing precursors can be decomposed on a substrate at a temperature of less than about 400° C. One or more of the boron and carbon containing films can have a thickness of less than about 30 angstroms. Methods of doping a semiconductor substrate are provided. Doping a semiconductor substrate can include depositing a boron and carbon film over the semiconductor substrate by exposing the substrate to a vapor phase boron precursor at a process temperature of about 300° C. to about 450° C., where the boron precursor includes boron, carbon and hydrogen, and annealing the boron and carbon film at a temperature of about 800° C. to about 1200° C.

    Abstract translation: 提供了沉积硼和碳的膜的方法。 在一些实施例中,提供了沉积具有所需性质(诸如保形性和蚀刻速率)的B,C膜的方法。 一种或多种含硼和/或碳的前体可以在低于约400℃的温度下在基材上分解。含硼和碳的一种或多种膜可以具有小于约30埃的厚度。 提供掺杂半导体衬底的方法。 掺杂半导体衬底可以包括通过在大约300℃至大约450℃的工艺温度下将衬底暴露于气相硼前体而在半导体衬底上沉积硼和碳膜,其中硼前体包括硼, 碳和氢,并在约800℃至约1200℃的温度下退火硼和碳膜。

    Formation of SiN thin films
    8.
    发明授权

    公开(公告)号:US11784043B2

    公开(公告)日:2023-10-10

    申请号:US17406919

    申请日:2021-08-19

    CPC classification number: H01L21/0228 H01L21/0217 H01L21/02208 H01L21/02274

    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyl halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.

    Formation of SiN thin films
    9.
    发明授权

    公开(公告)号:US11133181B2

    公开(公告)日:2021-09-28

    申请号:US16543917

    申请日:2019-08-19

    Abstract: Methods of forming silicon nitride thin films on a substrate in a reaction space under high pressure are provided. The methods can include a plurality of plasma enhanced atomic layer deposition (PEALD) cycles, where at least one PEALD deposition cycle comprises contacting the substrate with a nitrogen plasma at a process pressure of 20 Torr to 500 Torr within the reaction space. In some embodiments the silicon precursor is a silyly halide, such as H2SiI2. In some embodiments the processes allow for the deposition of silicon nitride films having improved properties on three dimensional structures. For example, such silicon nitride films can have a ratio of wet etch rates on the top surfaces to the sidewall of about 1:1 in dilute HF.

Patent Agency Ranking