Abstract:
There is provided a method of fabricating a vertical light emitting diode which includes forming a light emitting diode structure. Forming the light emitting diode structure includes: forming a first material layer of a first conductivity type, forming a second material layer of a second conductivity type, forming a light emitting layer between the first material layer and the second material layer, and forming a plurality of generally ordered photonic nanostructures at a surface of the first material layer through which light generated from the light emitting layer is emitted for enhancing light extraction efficiency of the vertical light emitting diode. In particular, forming a plurality of generally ordered photonic nanostructures includes forming a self-assembled template including generally ordered nanoparticles on the surface of the first material layer to function as a mask for forming the photonic nanostructures at said surface of the first material layer. There is also provided a vertical light emitting diode with the self-assembly derived ordered nanoparticles.
Abstract:
The invention provides a product and a manufacturing process for a high power semiconductor device. The semiconductor device comprises a GaN/AlGaN epilayer structure on an SOI substrate with a thick, uninterrupted GaN layer for use in high-power applications.
Abstract:
The invention provides a product and a manufacturing process for a high power semiconductor device. The semiconductor device comprises a GaN/AlGaN epilayer structure on an SOI substrate with a thick, uninterrupted GaN layer for use in high-power applications.
Abstract:
There is provided a method of fabricating a vertical light emitting diode which includes forming a light emitting diode structure. Forming the light emitting diode structure includes: forming a first material layer of a first conductivity type, forming a second material layer of a second conductivity type, forming a light emitting layer between the first material layer and the second material layer, and forming a plurality of generally ordered photonic nanostructures at a surface of the first material layer through which light generated from the light emitting layer is emitted for enhancing light extraction efficiency of the vertical light emitting diode. In particular, forming a plurality of generally ordered photonic nanostructures includes forming a self-assembled template including generally ordered nanoparticles on the surface of the first material layer to function as a mask for forming the photonic nanostructures at said surface of the first material layer. There is also provided a vertical light emitting diode with the self-assembly derived ordered nanoparticles.
Abstract:
There is provided a method for fabricating a semiconductor device having the following structure, and comprising the steps of growing a first and a second nucleation layer on a substrate; depositing a binary layer over these nucleation layers; and annealing the binary layer to form a first contact area and a second contact area on the substrate, wherein the annealed binary layer comprises a group 14 element selected from Si, Ge and their combination thereof, and the annealed binary layer in the first and second contact areas are capable of providing a lower contact resistance for a current to flow in the device. This method serves to provide an intermediate layer which enables the fabrication process to become CMOS compatible.
Abstract:
Contemplated is a semiconductor device comprising: a substrate; a group (III)-nitride layer; a metal-group (III)-nitride layer deposited between the substrate and group (III)-nitride layer; and a metal-nitride layer deposited between the substrate and the metal-group (III)-nitride layer. Also a method for making a semiconductor device with the above mentioned structure is contemplated. Furthermore, the substrate can be a silicon on insulator (SOI) substrate; the metal-nitride layer can be an aluminium nitride layer; the metal-group (III)-nitride layer can be an aluminium gallium nitride layer; and the group (III)-nitride layer can be a gallium nitride layer.
Abstract:
A method for fabrication of high electron mobility transistor (HEMT) semiconductor devices is presented. The method includes providing a substrate, growing a HEMT layer structure on the substrate; and self-aligned common metal stack formation of source, drain and gate electrodes on the HEMT layer structure using a single lithographic mask.
Abstract:
A method for fabrication of high electron mobility transistor (HEMT) semiconductor devices is presented. The method includes providing a substrate, growing a HEMT layer structure on the substrate; and self-aligned common metal stack formation of source, drain and gate electrodes on the HEMT layer structure using a single lithographic mask.
Abstract:
There is provided a method for fabricating a semiconductor device having the following structure, and comprising the steps of growing a first and a second nucleation layer on a substrate; depositing a binary layer over these nucleation layers; and annealing the binary layer to form a first contact area and a second contact area on the substrate, wherein the annealed binary layer comprises a group 14 element selected from Si, Ge and their combination thereof, and the annealed binary layer in the first and second contact areas are capable of providing a lower contact resistance for a current to flow in the device. This method serves to provide an intermediate layer which enables the fabrication process to become CMOS compatible.
Abstract:
There is provided a method of fabricating a vertical light emitting diode which includes forming a light emitting diode structure. Forming the light emitting diode structure includes: forming a first material layer of a first conductivity type, forming a second material layer of a second conductivity type, forming a light emitting layer between the first material layer and the second material layer, and forming a plurality of generally ordered photonic nanostructures at a surface of the first material layer through which light generated from the light emitting layer is emitted for enhancing light extraction efficiency of the vertical light emitting diode. In particular, forming a plurality of generally ordered photonic nanostructures includes forming a self-assembled template including generally ordered nanoparticles on the surface of the first material layer to function as a mask for forming the photonic nanostructures at said surface of the first material layer. There is also provided a vertical light emitting diode with the self-assembly derived ordered nanoparticles.