摘要:
A semiconductor arrangement includes a semiconductor body and a power transistor arranged in a first device region of the semiconductor body. The power transistor includes at least one source region, a drain region, and at least one body region, at least one drift region of a first doping type and at least one compensation region of a second doping complementary to the first doping type, and a gate electrode arranged adjacent to the at least one body region and dielectrically insulated from the body region by a gate dielectric. The semiconductor arrangement also includes a further semiconductor device arranged in a second device region of the semiconductor body. The second device region includes a well-like structure of the second doping type surrounding a first semiconductor region of the first doping type. The further semiconductor device includes device regions arranged in the first semiconductor region.
摘要:
A semiconductor arrangement includes a semiconductor body and a power transistor arranged in a first device region of the semiconductor body. The power transistor includes at least one source region, a drain region, and at least one body region, at least one drift region of a first doping type and at least one compensation region of a second doping complementary to the first doping type, and a gate electrode arranged adjacent to the at least one body region and dielectrically insulated from the body region by a gate dielectric. The semiconductor arrangement also includes a further semiconductor device arranged in a second device region of the semiconductor body. The second device region includes a well-like structure of the second doping type surrounding a first semiconductor region of the first doping type. The further semiconductor device includes device regions arranged in the first semiconductor region.
摘要:
A semiconductor device with a semiconductor body and method for its production is disclosed. The semiconductor body includes drift zones of epitaxially grown semiconductor material of a first conduction type. The semiconductor body further includes charge compensation zones of a second conduction type complementing the first conduction type, which are arranged laterally adjacent to the drift zones. The charge compensation zones are provided with a laterally limited charge compensation zone doping, which is introduced into the epitaxially grown semiconductor material. The epitaxially grown semiconductor material includes 20 to 80 atomic % of the doping material of the drift zones and a doping material balance of 80 to 20 atomic % introduced by ion implantation and diffusion.
摘要:
A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
摘要:
A component arrangement including a MOS transistor having a field electrode is disclosed. One embodiment includes a gate electrode, a drift zone and a field electrode, arranged adjacent to the drift zone and dielectrically insulated from the drift zone by a dielectric layer a charging circuit, having a rectifier element connected between the gate electrode and the field electrode.
摘要:
Disclosed is a method of forming a semiconductor device with drift regions of a first doping type and compensation regions of a second doping type, and a semiconductor device with drift regions of a first doping type and compensation regions of a second doping type.
摘要:
A description is given of a normally on semiconductor component having a drift zone, a drift control zone and a drift control zone dielectric arranged between the drift zone and the drift control zone.
摘要:
A semiconductor device with a semiconductor body and method for its production is provided. The semiconductor body includes drift zones of epitaxially grown semiconductor material of a first conduction type. The semiconductor body further includes charge compensation zones of a second conduction type complementing the first conduction type, which are arranged laterally adjacent to the drift zones. The charge compensation zones are provided with a laterally limited charge compensation zone doping, which is introduced into the epitaxially grown semiconductor material. The epitaxially grown semiconductor material includes 20 to 80 atomic % of the doping material of the drift zones and a doping material balance of 80 to 20 atomic % introduced by ion implantation and diffusion.
摘要:
A semiconductor device with inherent capacitances and method for its production. The semiconductor device has an inherent feedback capacitance between a control electrode and a first electrode. In addition, the semiconductor device has an inherent drain-source capacitance between the first electrode and a second electrode. At least one monolithically integrated additional capacitance is connected in parallel to the inherent feedback capacitance or in parallel to the inherent drain-source capacitance. The additional capacitance comprises a first capacitor surface and a second capacitor surface opposite the first capacitor surface. The capacitor surfaces are structured conductive layers of the semiconductor device on a front side of the semiconductor body, between which a dielectric layer is located and which form at least one additional capacitor.
摘要:
A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger then a breakdown charge amount at breakdown voltage.