摘要:
A method and system of processing a semiconductor substrate includes, in one or more embodiments, depositing a protective layer on the substrate surface comprising a conductive element disposed in a dielectric material; processing the protective layer to expose the conductive element; electrolessly depositing a metallic passivating layer onto the conductive element; and removing at least a portion of the protective layer from the substrate after electroless deposition. In another aspect, a method and system of processing a semiconductor includes depositing a metallic passivating layer onto a substrate surface comprising a conductive element, masking the passivating layer to protect the underlying conductive element of the substrate surface, removing the unmasked passivating layer, and removing the mask from the passivating layer.
摘要:
An apparatus and a method of depositing a catalytic layer comprising at least one metal selected from the group consisting of noble metals, semi-noble metals, alloys thereof, and combinations thereof in sub-micron features formed on a substrate. Examples of noble metals include palladium and platinum. Examples of semi-noble metals include cobalt, nickel, and tungsten. The catalytic layer may be deposited by electroless deposition, electroplating, or chemical vapor deposition. In one embodiment, the catalytic layer may be deposited in the feature to act as a barrier layer to a subsequently deposited conductive material. In another embodiment, the catalytic layer may be deposited over a barrier layer. In yet another embodiment, the catalytic layer may be deposited over a seed layer deposited over the barrier layer to act as a “patch” of any discontinuities in the seed layer. Once the catalytic layer has been deposited, a conductive material, such as copper, may be deposited over the catalytic layer. In one embodiment, the conductive material is deposited over the catalytic layer by electroless deposition. In another embodiment, the conductive material is deposited over the catalytic layer by electroless deposition followed by electroplating or followed by chemical vapor deposition. In still another embodiment, the conductive material is deposited over the catalytic layer by electroplating or by chemical vapor deposition.
摘要:
Embodiments of the invention generally provide an apparatus and method for replenishing organic molecules in an electroplating bath. The replenishment process of the present invention may occur on a real-time basis, and therefore, the concentration of organics minimally varies from desired concentration levels. The replenishment method generally includes conducting pre-processing depletion measurements in order to determine organic depletion rates per current density applied in the electroplating system. Once the organic depletion rates per current density are determined, these depletion rates may be applied to an electroplating processing recipe to calculate the volume of organic depletion per recipe step. The calculated volume of organic depletion per recipe step may then be used to determine the volume of organic molecule replenishment per unit of time that is required per recipe step in order to maintain a desired concentration of organics in the plating solution. The calculated replenishment volume may then be added to the processing recipe so that the replenishment process may occur at real-time during processing periods. The apparatus generally includes a selectively actuated valve in communicaiton with a fluid delivery line, wherein the valve is configured to fluidly isolate a plating cell during a non-processing time period. The valve may be controlled by a system controller, and thus, the fluid level in the cell may be controlled during a non-processing time period.
摘要:
Embodiments of the present invention generally relate to a method and apparatus for planarizing a substrate by electropolishing techniques. Certain embodiments of an electropolishing apparatus include a contact ring adapted to support a substrate, a cell body adapted to hold an electropolishing solution, a fluid supply system adapted to provide the electropolishing solution to the cell body, a cathode disposed within the cell body, a power supply system in electrical communication with the contact ring and the cathode, and a controller coupled to at least the fluid supply system and the power supply system. The controller may be adapted to provide a first set of electropolishing conditions to form a boundary layer between the substrate and the electropolishing solution to an initial thickness and may be adapted to provide a second set of electropolishing conditions to control the boundary layer to a subsequent thickness less than or equal to the initial thickness.
摘要:
A method for depositing a passivation layer on a substrate surface using one or more electroplating techniques is provided. Embodiments of the method include selectively depositing an initiation layer on a conductive material by exposing the substrate surface to a first electroless solution, depositing a passivating material on the initiation layer by exposing the initiation layer to a second electroless solution, and cleaning the substrate surface with an acidic solution. In another aspect, the method includes applying ultrasonic or megasonic energy to the substrate surface during the application of the acidic solution. In still another aspect, the method includes using the acidic solution to remove between about 100 Å and about 200 Å of the passivating material. In yet another aspect, the method includes cleaning the substrate surface with a first acidic solution prior to the deposition of the initiation layer.
摘要:
Methods are provided for depositing a dielectric material for use as an anti-reflective coating and sacrificial dielectric material in damascene formation. In one aspect, a process is provided for processing a substrate including depositing an acidic dielectric layer on the substrate by reacting an oxygen-containing organosilicon compound and an acidic compound, depositing a photoresist material on the acidic dielectric layer, and patterning the photoresist layer. The acidic dielectric layer may be used as a sacrificial layer in forming a feature definition by etching a partial feature definition, depositing the acidic dielectric material, etching the remainder of the feature definition, and then removing the acidic dielectric material to form a feature definition.
摘要:
Embodiments in accordance with the present invention relate to a number of techniques, which may be applied alone or in combination, to reduce charge damage of substrates exposed to electron beam radiation. In one embodiment, charge damage is reduced by establishing a robust electrical connection between the exposed substrate and ground. In another embodiment, charge damage is reduced by modifying the sequence of steps for activating and deactivating the electron beam source to reduce the accumulation of charge on the substrate. In still another embodiment, a plasma is struck in the chamber containing the e-beam treated substrate, thereby removing accumulated charge from the substrate. In a further embodiment of the present invention, the voltage of the anode of the e-beam source is reduced in magnitude to account for differences in electron conversion efficiency exhibited by different cathode materials.
摘要:
A method of depositing a low dielectric constant film on a substrate and post-treating the low dielectric constant film is provided. The post-treatment includes rapidly heating the low dielectric constant film to a desired high temperature and then rapidly cooling the low dielectric constant film such that the low dielectric constant film is exposed to the desired high temperature for about five seconds or less. In one aspect, the post-treatment also includes exposing the low dielectric constant film to an electron beam treatment and/or UV radiation.
摘要:
A two-stage plasma enhance dielectric deposition with a first stage of low capacitively-coupled RF bias with conformal deposition (202) followed by high capacitively-coupled RF bias for planarizing deposition (204) limits the charge build up on the underlying structure (104, 106, 108).
摘要:
A method is provided for depositing aluminum thin film layers to form contacts in a semiconductor integrated circuit device. All or some of the deposition process occurs at relatively low deposition rates at a temperature which allows surface migration of the deposited aluminum atoms. Aluminum deposited under these conditions tends to fill contact vias without the formation of voids. The deposition step is periodically interrupted.