Abstract:
An exemplary apparatus includes a testing module connected to, and providing a test voltage to, an integrated circuit containing devices under test. The testing module performs a time-dependent dielectric breakdown (TDDB) test on the devices under test. A decoder is connected to the devices under test and the testing module. The decoder selectively connects each device being tested to the testing module. Efuses are connected to a different one of the devices under test. The efuses separately electrically disconnect each of the devices under test from the test voltage upon failure of a corresponding device under test. Protection circuits are connected between the efuses and a ground voltage. Each protection circuit provides a shunt around the decoder upon failure of the device under test.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
An ESD device is provided for protecting a circuit from electrostatic discharge, and includes a planar diode having an anode and a cathode. The anode is electrically coupled to a signal path of the circuit, and the cathode is electrically coupled to a ground of the circuit. The ESD device is configured to be off during normal operation of the circuit and to turn on in response to an electrostatic discharge on the signal path. Two depletion regions in the device are separated by an isolation well. In response to the electrostatic discharge, the depletion regions modulate (e.g., widen and merge), providing a path for the discharge to the ground of the circuit.
Abstract:
There is set forth herein a semiconductor structure including a plurality of test devices, the plurality of test devices including a first test device and a second test device. A semiconductor structure can also include a waveform generating circuit, the waveform generating circuit configured for application of a first stress signal waveform having a first duty cycle to the first test device, and a second stress signal waveform having a second duty cycle to the second test device. A semiconductor structure can include a selection circuit associated with each of the first test device and the second test device for switching between a stress cycle and a sensing cycle.
Abstract:
There is set forth herein a field effect transistor (FET) configured as an ESD protection device. In one embodiment, the FET can be configured to operate in a snapback operating mode. The FET can include a semiconductor substrate, a gate formed on the substrate and a dummy gate formed on the substrate spaced apart from the gate.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to electrostatic discharge (ESD) protection circuits and methods of use and manufacture. The structure includes: an electrostatic discharge (ESD) clamp which receives an input signal from a trigger circuit; and a voltage node connecting to a back gate of the ESD clamp, the voltage node providing a voltage to the ESD clamp during an electrostatic discharge (ESD) event.
Abstract:
An exemplary apparatus includes a testing module connected to, and providing a test voltage to, an integrated circuit containing devices under test. The testing module performs a time-dependent dielectric breakdown (TDDB) test on the devices under test. A decoder is connected to the devices under test and the testing module. The decoder selectively connects each device being tested to the testing module. Efuses are connected to a different one of the devices under test. The efuses separately electrically disconnect each of the devices under test from the test voltage upon failure of a corresponding device under test. Protection circuits are connected between the efuses and a ground voltage. Each protection circuit provides a shunt around the decoder upon failure of the device under test.
Abstract:
A device and method to control the heating of an IC chip in a wafer form for measuring various parameters associated therewith are provided. Embodiments include a device having a silicon layer with an upper surface, and on a plastic carrier; a plurality of devices in the silicon layer and electrically coupled through the upper surface to a test control system; a through silicon via (TSV) extending into the silicon layer; and a parallel heating structure adjacent to the plurality of devices electrically coupled to the test control system.
Abstract:
A calibration circuit is connected to an input/output driver, a voltage bias generator is connected to the calibration circuit and the input/output driver, and a temperature sensor is connected to the voltage bias generator. The calibration circuit and input/output driver each include a bank of resistors and corresponding switches. Bodies of the switches are connected to the voltage bias generator, and the switches are biased by a bias signal output from the voltage bias generator. The calibration circuit includes a comparator device connected to the switches and to a reference resistor. Activation and deactivation of selected ones of the switches is made to match the reference resistor. Also, the voltage bias generator adjusts the bias signal when a temperature change is sensed by the temperature sensor. Thus, the switches change current flow as the bias signal changes, without changing which of the switches are activated or deactivated.
Abstract:
Methods of forming a field-effect transistor. A gate structure is formed that overlaps with a channel region in a semiconductor fin. The semiconductor fin is etched with a first etching process to form a cavity extending through the semiconductor fin and into a substrate fin underlying the semiconductor fin. After the cavity is formed, the semiconductor fin is etched selective to the substrate fin with a second etching process to widen a portion of the cavity.