Abstract:
Formation of a bottom junction in vertical FET devices may include, for instance, providing an intermediate semiconductor structure comprising a semiconductor substrate, a fin disposed on the semiconductor substrate. The fin has a top surface, spaced-apart vertical sides. A mask is disposed over the top surface of the fin, and at least one is disposed over the vertical sides of the fin. Portions of the substrate are removed to define spaced-apart recesses each extending below a respective one of the spacers. Semiconductor material is grown, such as epitaxially grown, in the recesses.
Abstract:
Devices and methods for forming semiconductor devices with metal-titanium oxide contacts are provided. One intermediate semiconductor device includes, for instance: a substrate, at least one field-effect transistor disposed on the substrate, a first contact region positioned over at least a first portion of the at least one field-effect transistor between a spacer and an interlayer dielectric, and a second contact region positioned over at least a second portion of the at least one field-effect transistor between a spacer and an interlayer dielectric. One method includes, for instance: obtaining an intermediate semiconductor device and forming at least one contact on the intermediate semiconductor device.
Abstract:
A non-planar semiconductor structure, for example, a dual FinFET structure, includes a n-type semiconductor device and a p-type semiconductor device. Metal-insulator-semiconductor (MIS) contacts provide electrical connection to the n-type device, and metal-semiconductor (MS) contacts provide electrical connection to the p-type device. The metal of both MIS and MS contacts is a same n-type work function metal. In one example, the semiconductor of the MIS contact includes epitaxial silicon germanium with a relatively low percentage of germanium, the insulator of the MIS contact includes titanium dioxide, the semiconductor for the MS contact includes silicon germanium with a relatively high percentage of germanium or pure germanium, and the metal for both contacts includes a n-type work function metal.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to vertical transport field effect transistor devices and methods of manufacture. A structure includes: a vertical fin structure having a lower dopant region, an upper dopant region and a channel region between the lower dopant region and the upper dopant region; and a doped semiconductor material provided on sides of the vertical fin structure at a lower portion. The lower dopant region being composed of the doped semiconductor material which is merged into the vertical fin structure at the lower portion.
Abstract:
Formation of a bottom junction in vertical FET devices may include, for instance, providing an intermediate semiconductor structure comprising a semiconductor substrate, a fin disposed on the semiconductor substrate. The fin has a top surface, spaced-apart vertical sides. A mask is disposed over the top surface of the fin, and at least one is disposed over the vertical sides of the fin. Portions of the substrate are removed to define spaced-apart recesses each extending below a respective one of the spacers. Semiconductor material is grown, such as epitaxially grown, in the recesses.
Abstract:
A trench contact epilayer in a semiconductor device is provided. Embodiments include forming trenches through an interlayer dielectric (ILD) over source/drain regions in NFET and PFET regions; depositing a conformal silicon nitride (SiN) layer over the ILD and in the trenches; removing the SiN layer in the PFET region; growing a germanium (Ge) epilayer over the source/drain regions in the PFET region; depositing metal over the ILD and in the trenches in the NFET and PFET regions; etching the metal in the NFET region to expose the conformal SiN layer; removing the SiN layer in the NFET region; growing a Group III-V epilayer over the source/drain regions in the NFET region; and depositing metal over the ILD and in the trenches in the NFET region.
Abstract:
Devices and methods for forming semiconductor devices with metal-titanium oxide contacts are provided. One intermediate semiconductor device includes, for instance: a substrate, at least one field-effect transistor disposed on the substrate, a first contact region positioned over at least a first portion of the at least one field-effect transistor between a spacer and an interlayer dielectric, and a second contact region positioned over at least a second portion of the at least one field-effect transistor between a spacer and an interlayer dielectric. One method includes, for instance: obtaining an intermediate semiconductor device and forming at least one contact on the intermediate semiconductor device.