Abstract:
Threshold switching devices demonstrating transient current protection through both insulation and repair current mechanisms, including associated systems and methods, are provided and discussed.
Abstract:
In one embodiment, an apparatus comprises read circuitry to apply a read voltage to a three dimensional crosspoint (3DXP) memory cell; and write setback circuitry to apply a first setback pulse having a first magnitude to the 3DXP memory cell in response to the application of the read voltage, wherein applying the first setback pulse comprises bypassing a current mirror that is to limit or control a magnitude of a second setback pulse applied to the 3DXP memory cell when the current mirror is coupled to the 3DXP memory cell.
Abstract:
A multistage read can dynamically change wordline capacitance as a function of threshold voltage of a memory cell being read. The multistage read can reduce current spikes and reduce the heating up of a memory cell during a read. A memory device includes a global wordline driver to connect a wordline of a selected memory cell to the sensing circuit, and a local wordline driver local to the memory cell. After the wordline is charged to a read voltage, control logic can selectively enable and disable a portion or all of the global wordline driver and the local wordline driver in conjunction with applying different discrete voltage levels to the bitline to perform a multistage read.
Abstract:
A method, apparatus and system. The method includes: generating a feedback voltage VFB in a feedback circuit coupled to one of a bitline node (BL) or a wordline node (WL) of each of a plurality of memory cells of a memory array, the feedback voltage to, in a thresholded state of said each of the memory cells, counteract a decrease in an absolute value of a voltage Vvdm at said one of the BL or WL; generating, in a reference circuit, one of a reference voltage VREF to track a feedback voltage of the feedback circuit or a mirror current IMFBmirror to track a current Icell through said each of the memory cells; and providing one of values for both VFB and VREF, or for an output voltage Vapsout corresponding to IMFBmirror, to a sense circuitry, the sense circuitry to determine a logic state of said each of the memory cells based on a comparison of VFB with VREF or based on Vapsout.
Abstract:
Threshold switching devices demonstrating transient current protection through both insulation and repair current mechanisms, including associated systems and methods, are provided and discussed.
Abstract:
The present disclosure relates to reference and sense architecture in a cross-point memory. An apparatus may include a memory controller configured to select a target memory cell for a memory access operation. The memory controller includes word line (WL) switch circuitry configured to select a global WL (GWL) and a local WL (LWL) associated with the target memory cell; bit line (BL) switch circuitry configured to select a global BL (GBL) and a local BL (LBL) associated with the target memory cell; and sense circuitry including a first sense circuitry capacitance and a second sense circuitry capacitance, the sense circuitry configured to precharge the selected GWL, the LWL and the first sense circuitry capacitance to a WL bias voltage WLVDM, produce a reference voltage (VREF) utilizing charge on the selected GWL and charge on the first sense circuitry capacitance and determine a state of the target memory cell based, at least in part, on VREF and a detected memory cell voltage VLWL.
Abstract:
Threshold switching devices demonstrating transient current protection through both insulation and repair current mechanisms, including associated systems and methods, are provided and discussed.
Abstract:
A multistage read can dynamically change wordline capacitance as a function of threshold voltage of a memory cell being read. The multistage read can reduce current spikes and reduce the heating up of a memory cell during a read. A memory device includes a global wordline driver to connect a wordline of a selected memory cell to the sensing circuit, and a local wordline driver local to the memory cell. After the wordline is charged to a read voltage, control logic can selectively enable and disable a portion or all of the global wordline driver and the local wordline driver in conjunction with applying different discrete voltage levels to the bitline to perform a multistage read.
Abstract:
The present disclosure relates to reference and sense architecture in a cross-point memory. An apparatus may include a memory controller configured to select a target memory cell for a memory access operation. The memory controller includes word line (WL) switch circuitry configured to select a global WL (GWL) and a local WL (LWL) associated with the target memory cell; bit line (BL) switch circuitry configured to select a global BL (GBL) and a local BL (LBL) associated with the target memory cell; and sense circuitry including a first sense circuitry capacitance and a second sense circuitry capacitance, the sense circuitry configured to precharge the selected GWL, the LWL and the first sense circuitry capacitance to a WL bias voltage WLVDM, produce a reference voltage (VREF) utilizing charge on the selected GWL and charge on the first sense circuitry capacitance and determine a state of the target memory cell based, at least in part, on VREF and a detected memory cell voltage VLWL.
Abstract:
A method, apparatus and system to address memory cells in a memory array that includes address lines comprising wordlines (WLs) and bitlines (BLs). The method comprises: controlling a decoder circuitry of a memory array, the memory array including a plurality of WLs and a plurality of BLs, the decoder circuitry including a plurality of switches coupled respectively to the WLs, or respectively to the BLs; and causing a selected switch of the plurality of switches to change a bias of a corresponding selected address line coupled thereto from a floating bias at an idle state of the decoder circuitry to either a positive bias or a negative bias without changing a bias at deselected address lines corresponding to deselected switches of the plurality of switches from the floating bias at the idle state.