Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
In a recognition method, movement characteristics of an object are determined based on sensor information; image information of the object is determined based on the sensor information; and one or more gesture recognition operations are performed based on the movement characteristics and the image information to generate gesture recognition information. The recognition method may further include determining one or more physical characteristics of the object based on the image information; performing one or more physical characteristic pattern recognition operations based on the one or more physical characteristics to generate pattern recognition information; and generating a recognition output signal based on the gesture recognition information and the pattern recognition information.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication via a dual directional antenna. For example, a device may include a hinge to connect between first and second elements to allow rotating the first element between first and second rotational states with respect to the second element, and a rotatable dual directional wireless communication antenna coupled to the hinge. The dual directional wireless communication antenna may be configured to communicate wireless communication signals in a first direction, when the first element is at the first rotational state, and to communicate the wireless communication signals in a second direction, different from the first direction, when the first element is at the second rotational state.
Abstract:
Embodiments of millimeter-wave antenna structures are generally described herein. The antenna structure may include an a radiating-element layer comprising a patterned conductive material, a ground layer comprising conductive material disposed on a dielectric substrate, and a feed-line layer comprising conductive material disposed on a dielectric substrate. In some embodiments, the antenna structure may include an air-gap layer disposed between the radiating-element layer and the ground layer. The air-gap layer may include spacing elements to separate the radiating-element layer and the ground layer by a predetermined distance. In some other embodiments, the radiating-element layer may be disposed on a radiating-element dielectric substrate which may include one or more cavities between the radiating-element layer and the ground layer.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of wireless communication via a dual directional antenna. For example, a device may include a hinge to connect between first and second elements to allow rotating the first element between first and second rotational states with respect to the second element, and a rotatable dual directional wireless communication antenna coupled to the hinge. The dual directional wireless communication antenna may be configured to communicate wireless communication signals in a first direction, when the first element is at the first rotational state, and to communicate the wireless communication signals in a second direction, different from the first direction, when the first element is at the second rotational state.