摘要:
An internal combustion engine in an engine exhaust passage of which an NOx adsorption catalyst (12) adsorbing NOx contained in exhaust gas at the time of a low temperature and desorbing the adsorbed NOx when the temperature rises and an NOx storage catalyst (14) are arranged. When the NOx storage catalyst (14) can store NOx, the temperature of the NOx adsorption catalyst (12) is made to forcibly rise to a target temperature at which the amount of NOx which the NOx storage catalyst (14) can store is desorbed, and the NOx desorbed from the NOx adsorption catalyst (12) is stored in the NOx storage catalyst (14).
摘要:
An internal combustion engine in an engine exhaust passage of which an NOx adsorption catalyst (12) adsorbing NOx contained in exhaust gas at the time of a low temperature and desorbing the adsorbed NOx when the temperature rises and an NOx storage catalyst (14) are arranged. When the NOx storage catalyst (14) can store NOx, the temperature of the NOx adsorption catalyst (12) is made to forcibly rise to a target temperature at which the amount of NOx which the NOx storage catalyst (14) can store is desorbed, and the NOx desorbed from the NOx adsorption catalyst (12) is stored in the NOx storage catalyst (14).
摘要:
An exhaust gas-purifying catalyst (1) contains a rare-earth element, an alkaline-earth element, zirconium and a precious metal, an atomic ratio of the alkaline-earth element with respect to the sum of the rare-earth element and the zirconium is equal to 0.1 atomic % or higher and lower than 10 atomic %, a part of the rare-earth element, a part of the zirconium and at least a part of the alkaline-earth element forming a composite oxide, and the composite oxide and a part of precious metal forming a solid solution.
摘要:
An exhaust gas-purifying catalyst (1) contains a rare-earth element, an alkaline-earth element, zirconium and a precious metal, an atomic ratio of the alkaline-earth element with respect to the sum of the rare-earth element and the zirconium is equal to 0.1 atomic % or higher and lower than 10 atomic %, a part of the rare-earth element, a part of the zirconium and at least a part of the alkaline-earth element forming a composite oxide, and the composite oxide and a part of precious metal forming a solid solution.
摘要:
The present invention provides a device and a method for supplying a fuel or a reducing agent, where a fuel or reducing agent supplied by injection can be vaporized and/or a fuel or reducing agent having high reactivity can be provided, and provides a plasma torch (30) usable therefor. The device for supplying a fuel or a reducing agent comprises a plasma torch (30) for converting a gas (23, 33) into a plasma and blowing out the plasma, and an injector (18) for injecting a fuel or a reducing agent to a region (20) where the plasma is supplied. The method comprises converting a gas (23, 33) into a plasma, blowing out the plasma, and injecting a fuel or a reducing agent to the plasma region (20).
摘要:
A catalyst for purifying exhaust gases includes a support including at le one composite selected from the group consisting of TiO.sub.2 --Al.sub.2 O.sub.3, ZrO.sub.2 --Al.sub.2 O.sub.3 and SiO.sub.2 --Al.sub.2 O.sub.3 composites, an NO.sub.x adsorbent including at least one member selected from the group consisting of alkali metals, alkaline-earth metals and rare-earth elements and loaded on the support, and a noble metal catalyst ingredient loaded on the support. The composites constituting the support improve initial NO.sub.x conversion of the catalyst, but also inhibit NO.sub.x purifying performance thereof from degrading even after a durability test.
摘要翻译:一种用于净化废气的催化剂包括包含至少一种选自TiO 2 -Al 2 O 3,ZrO 2 -Al 2 O 3和SiO 2 -Al 2 O 3复合材料的复合材料的载体,包括选自碱金属, 碱土金属和稀土元素并负载在载体上,贵金属催化剂成分装载在载体上。 构成载体的复合体能够提高催化剂的初始NOx转化率,而且即使在耐久性试验后也能够抑制NOx净化性能的劣化。
摘要:
The present invention provides an exhaust gas purification catalyst comprising a base material, and a two or more layered catalyst coating layer, formed on the base material, wherein the two or more layers have upper and lower layers, and wherein the upper layer contains a large amount of noble metal per liter of the base material more than that of the lower layer, and the lower layer contains a large amount of an oxygen storage/release material per liter of the base material more than that of the upper layer. This exhaust gas purification catalyst has more excellent H2S purifying performance than conventional catalysts while maintaining purifying performance against NOx and the other exhaust gas components.
摘要:
An excellent oxygen storage capacity is achieved even in the case used for a long period of time under high temperature conditions. An oxygen storage material contains a first particle made of a composite oxide of cerium and zirconium or a composite oxide of cerium, a rare-earth element other than cerium and zirconium, a second particle including a composite oxide of a rare-earth element, an alkaline-earth element and zirconium, and a precious metal. A part of the precious metal forms a solid solution with the composite oxide included in the second particle.
摘要:
The present invention provides an exhaust gas purifying apparatus 10 which can effectively purify an exhaust gas with the use of a plasma. The present exhaust gas purifying apparatus 10 comprises a NOx purifying catalyst 1 disposed in an exhaust gas pipe 11 for an internal combustion engine (ENG); a plasma generator 2 for converting a gas into a plasma and supplying the plasma to the exhaust pipe at the upstream of the NOx purifying catalyst; a switching device 3 for selectively supplying one of a recirculated exhaust gas 13 and air 12 as a gas to be converted into a plasma to the plasma generator 2; and an injector 4 for adding a reducing agent to the gas 14 to be converted into a plasma or a plasma 15 converted from the gas by the plasma generator. The present invention further provides a method for controlling the exhaust gas purifying apparatus.
摘要:
A method for purifying an exhaust gas containing an excess amount of oxygen, to remove nitrogen oxides, carbon monoxide and hydrocarbons therefrom, by bringing a catalyst into contact with the exhaust gas, the catalyst comprising a zeolite ion-exchanged with (a) cobalt or (b) both cobalt and at least one metal selected from the group consisting of alkaline earth metals and rare earth metals, the zeolite being selected from the group consisting of ferrierite, ZSM-5, ZSM-11, ZSM-12 and ZSM-20, and having a silica-to-alumina molar ratio of from 15 to 1,000.