Abstract:
A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
Abstract:
A sensor component includes a sensor including a sensor surface and a reaction site in cooperation with the sensor and exposing the sensor surface. The reaction site including a reaction site surface. A surface agent is bound to the reaction site surface or the sensor surface. The surface agent includes a surface active functional group reactive with Bronsted base or Lewis acid functionality on the reaction site surface or the sensor surface and including distal functionality that does not have a donor electron pair.
Abstract:
A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
Abstract:
According to various embodiments, a method is provided that comprises washing an array of DNA-coated beads on a substrate, with a wash solution to remove stacked beads from the substrate. The wash solution can include inert solid beads in a carrier. The DNA-coated beads can have an average diameter and the solid beads in the wash solution can have an average diameter that is at least twice the diameter of the DNA-coated beads. The washing can form dislodged DNA-coated beads and a monolayer of DNA-coated beads. In some embodiments, first beads for forming an array are contacted with a poly(ethylene glycol) (PEG) solution comprising a PEG having a molecular weight of about 350 Da or less. In some embodiments, slides for forming bead arrays are provided as are systems for imaging the same.
Abstract:
A sensor component includes a sensor including a sensor surface and a reaction site in cooperation with the sensor and exposing the sensor surface. The reaction site including a reaction site surface. A surface agent is bound to the reaction site surface or the sensor surface. The surface agent includes a surface active functional group reactive with Bronsted base or Lewis acid functionality on the reaction site surface or the sensor surface and including distal functionality that does not have a donor electron pair.
Abstract:
According to various embodiments, a method is provided that comprises washing an array of DNA-coated beads on a substrate, with a wash solution to remove stacked beads from the substrate. The wash solution can include inert solid beads in a carrier. The DNA-coated beads can have an average diameter and the solid beads in the wash solution can have an average diameter that is at least twice the diameter of the DNA-coated beads. The washing can form dislodged DNA-coated beads and a monolayer of DNA-coated beads. In some embodiments, first beads for forming an array are contacted with a poly(ethylene glycol) (PEG) solution comprising a PEG having a molecular weight of about 350 Da or less. In some embodiments, slides for forming bead arrays are provided as are systems for imaging the same.
Abstract:
According to various embodiments, a method is provided that comprises washing an array of DNA-coated beads on a substrate, with a wash solution to remove stacked beads from the substrate. The wash solution can include inert solid beads in a carrier. The DNA-coated beads can have an average diameter and the solid beads in the wash solution can have an average diameter that is at least twice the diameter of the DNA-coated beads. The washing can form dislodged DNA-coated beads and a monolayer of DNA-coated beads. In some embodiments, first beads for forming an array are contacted with a poly(ethylene glycol) (PEG) solution comprising a PEG having a molecular weight of about 350 Da or less. In some embodiments, slides for forming bead arrays are provided as are systems for imaging the same.