摘要:
A kinematic coupling for a test system with a test head which must be docked with a handling device. The coupling is implemented with a plurality of modules attached to the test head. Each module has one kinematic surface and is designed to mate with another kinematic surface on the handling device. Each module includes a motor which can extend or retract the kinematic surface. These modules allow docking of the test head to the handling device with a final motion perpendicular to the handler. They also allow the tilt angle between the test head and the handler to be adjusted to achieve planarization.
摘要:
A manipulator for a test head connected to automatic test equipment through a heavy, inflexible cable. The manipulator includes a telescoping column assembly to which is mounted a vertical member. A cradle holding the test head is mounted to the vertical member. The cable is clamped at the vertical member to reduce the amount of force exerted by the cable on the test head. The cradle includes movable members to allow fine positioning of the test head, while maintaining the test head isolated from cable force. Course motion of the test head may be made by moving portions of the manipulator on the opposite side of the cable clamp from the test head. Precise positioning of the test head relative to a handling device is accomplished through a positioning mechanism at the interface between the test head and the handling device. To allow the positioning mechanism to operate, the manipulator has compliance which allows the test head to be forced into position by the positioning mechanism.
摘要:
Systems and methods for producing nanoscale textured low reflectivity surfaces may be utilized to fabricate solar cells. A substrate may be patterned with a resist prior to an etching process that produces a nanoscale texture on the surface of the substrate. Additionally, the substrate may be subjected to a dopant diffusion process. Prior to dopant diffusion, the substrate may be optionally subjected to liquid phase deposition to deposit a material that allows for patterned doping. The order of the nanoscale texture etching and dopant diffusion may be modified as desired to produce post-nano emitters or pre-nano emitters.
摘要:
A method of producing an inorganic thin film dielectric material layer includes providing a substrate. A first inorganic thin film dielectric material layer is deposited on the substrate using an atomic layer deposition process. The first inorganic thin film dielectric material layer is treated after its deposition. A patterned deposition inhibiting material layer is provided on the substrate. A second inorganic thin film dielectric material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process.
摘要:
A transistor includes a substrate; a gate including a first electrically conductive layer stack on the substrate; and a first inorganic thin film dielectric layer on the substrate with the first inorganic thin film dielectric layer having a first pattern. A second inorganic thin film dielectric layer has a second pattern. A semiconductor layer is in contact with and has the same pattern as the second inorganic thin film dielectric material layer. A source/drain includes a second electrically conductive layer stack.
摘要:
A delivery device for thin-film material deposition has at least first, second, and third inlet ports for receiving a common supply for a first, a second and a third gaseous material, respectively. Each of the first, second, and third elongated emissive channels allow gaseous fluid communication with one of corresponding first, second, and third inlet ports. The delivery device can be formed from apertured plates, superposed to define a network of interconnecting supply chambers and directing channels for routing each of the gaseous materials from its corresponding inlet port to a corresponding plurality of elongated emissive channels. The delivery device comprises a diffusing channel formed by a relief pattern between facing plates. Also disclosed is a process for thin film deposition. Finally, more generally, a flow diffuser and a corresponding method of diffusing flow is disclosed.
摘要:
Producing a vertical transistor includes providing a substrate including a gate material layer stack with a reentrant profile. A patterned deposition inhibiting material is deposited over a portion of the gate material layer stack and over a portion of the substrate. An electrically insulating material layer is deposited over a portion of the gate material layer stack and over a portion of the substrate using a selective area deposition process in which the electrically insulating material layer is not deposited over the patterned deposition inhibiting material. A semiconductor material layer is deposited over the electrically insulating material layer.
摘要:
The invention relates to a process for forming a structure comprising providing a support, coating one side of said support with a colored mask, coating a layer photopatternable by visible light, and exposing the layer through the colored mask with visible light to photopattern the layer.
摘要:
A process for forming a pixel circuit is disclosed comprising: (a) providing a transparent support; (b) forming a multicolor mask having at least four different color patterns; (c) forming integrated electronic components of the pixel circuit having at least four layers of patterned functional material comprising a first conductor, a dielectric, a semiconductor, and a second conductor each layer of patterned functional material corresponding to the four different color patterns of the multicolor mask. The functional material is patterned using a photopattern corresponding to each color pattern.
摘要:
A thin film environmental barrier encapsulation process includes providing an electronic device on a substrate, a first reactant gaseous material, a second reactant gaseous material, an inert gaseous material; and a delivery head through which the reactant gaseous materials and the inert gaseous material are simultaneously directed toward the electronic device and the substrate. One or more of the reactant gaseous materials and the inert gaseous material flows through the delivery head. The flow of the one or more of the reactant gaseous materials and the inert gaseous material generates a pressure to create a gas fluid bearing that maintains a substantially uniform distance between the delivery head and the substrate. Relative motion between the delivery head and the substrate causes the second reactant gaseous material to react with at least a portion of the electronic device and the substrate that has been treated with the first reactant gaseous material.