Abstract:
A method of manufacturing a microelectronic device may include forming a wiring layer on a first surface of a wafer. The method may also include forming a modified layer along separation regions for each microelectronic device of the wafer by focusing a laser on an inside portion of the wafer. The method may also include removing material from the second surface of the wafer. The wafer may be cooled to a temperature where a low dielectric constant layer extending across the separation regions is brittle while the material is removed from the second surface of the wafer. The method may further include separating the wafer along the separation region to form separate microelectronic devices.
Abstract:
Methods of fabricating a semiconductor device package may involve providing a fan out wafer including semiconductor-device-package locations at a base level. Laterally offset semiconductor dice may be stacked at least some semiconductor-device-package locations of the fan out wafer to expose bond pads at a lateral periphery of each of the laterally offset semiconductor dice. The laterally offset semiconductor dice may be electrically connected to one another and associated electrically conductive traces of the at least some semiconductor-device-package locations. The semiconductor-device-package locations having stacks of semiconductor dice thereon may be singulated from the fan out wafer.
Abstract:
Methods of making semiconductor device packages may involve providing a fan out wafer including semiconductor-device-package locations. Each semiconductor-device-package location may include at least two mutually spaced semiconductor dice and a dielectric material laterally surrounding each of the dice and extending between adjacent semiconductor-device-package locations. Electrically conductive traces may extend over active surfaces of the dice and laterally beyond peripheries of the dice over the dielectric material to locations of electrically conductive vias extending from the electrically conductive traces through the dielectric molding material. Semiconductor dice may be stacked on a side of at least some semiconductor-device-package locations of the fan out wafer opposite the electrically conductive traces. The stacks of semiconductor dice may be electrically connected to electrically conductive vias of the at least some semiconductor-device-package locations. The semiconductor-device-package locations having stacks of semiconductor dice thereon may be singulated from the fan out wafer.
Abstract:
A method of manufacturing a microelectronic device may include forming a wiring layer on a first surface of a wafer. The method may also include forming a modified layer along separation regions for each microelectronic device of the wafer by focusing a laser on an inside portion of the wafer. The method may also include removing material from the second surface of the wafer. The wafer may be cooled to a temperature where a low dielectric constant layer extending across the separation regions is brittle while the material is removed from the second surface of the wafer. The method may further include separating the wafer along the separation region to form separate microelectronic devices.
Abstract:
Methods of fabricating a semiconductor device package may involve providing a fan out wafer including semiconductor-device-package locations at a base level. Laterally offset semiconductor dice may be stacked at least some semiconductor-device-package locations of the fan out wafer to expose bond pads at a lateral periphery of each of the laterally offset semiconductor dice. The laterally offset semiconductor dice may be electrically connected to one another and associated electrically conductive traces of the at least some semiconductor-device-package locations. The semiconductor-device-package locations having stacks of semiconductor dice thereon may be singulated from the fan out wafer.
Abstract:
Methods of making semiconductor device packages may involve providing a fan out wafer including semiconductor-device-package locations. Each semiconductor-device-package location may include at least two mutually spaced semiconductor dice and a dielectric material laterally surrounding each of the dice and extending between adjacent semiconductor-device-package locations. Electrically conductive traces may extend over active surfaces of the dice and laterally beyond peripheries of the dice over the dielectric material to locations of electrically conductive vias extending from the electrically conductive traces through the dielectric molding material. Semiconductor dice may be stacked on a side of at least some semiconductor-device-package locations of the fan out wafer opposite the electrically conductive traces. The stacks of semiconductor dice may be electrically connected to electrically conductive vias of the at least some semiconductor-device-package locations. The semiconductor-device-package locations having stacks of semiconductor dice thereon may be singulated from the fan out wafer.
Abstract:
Die assemblies may include a first die abutting a substrate comprising a recess adjacent to the substrate. An adhesive element may be contained within the recess to attach the first die to the substrate. A height of the adhesive element may not contribute to an overall height of the die assembly. In some embodiments, a second die comprising a non-rectangular cross-sectional shape may be situated on the first die. Die assemblies ma also comprise a first die on a substrate and comprising a cavity on a side of the first die opposing a side on which the support substrate is located. A second die may be at least partially disposed in the cavity. Die assemblies may also comprise a first die secured to a substrate and partially inserted into a recess of a second die on a side opposing a side on which the substrate is located.