Abstract:
A component-embedded substrate includes a multilayer body including a plurality of insulating layers stacked in a stacking direction, an embedded component embedded in the multilayer body, and planar conductors disposed on both sides of the embedded component in the stacking direction, the planar conductors overlapping the embedded component. The planar conductors each include a plurality of openings that overlap the embedded component over substantially the entire region occupied by the embedded component, as seen in the stacking direction.
Abstract:
A multilayer resin substrate includes resin substrates laminated together, an overlapping portion in which a signal line as a conductor pattern and another conductor pattern overlap each other in a laminating direction of the resin substrates, and a non-overlapping portion in which the signal line and the other conductor pattern do no overlap each other in the laminating direction. A thin portion is provided at a position in the non-overlapping portion near the overlapping portion. The thin portion is a portion of the multilayer resin substrate which has a thickness smaller than the thickness in the overlapping portion in the laminating direction of the resin substrates.
Abstract:
A component-embedded substrate includes a laminate and an electronic component. The electronic component is embedded in the laminate. The laminate includes a frame-shaped conductor pattern. When the laminate is viewed in a laminating direction, the frame-shaped conductor pattern is arranged so as to substantially surround the entire periphery of the electronic component. The frame-shaped conductor pattern includes a first individual conductor pattern and a second individual conductor pattern. The first individual conductor pattern and the second individual conductor pattern are separated from each other. The first individual conductor pattern is arranged close to a first external terminal electrode of the electronic component, and the second individual conductor pattern is arranged close to a second external terminal electrode of the electronic component.
Abstract:
A multilayer resin substrate includes resin substrates laminated together, an overlapping portion in which a signal line as a conductor pattern and another conductor pattern overlap each other in a laminating direction of the resin substrates, and a non-overlapping portion in which the signal line and the other conductor pattern do no overlap each other in the laminating direction. A thin portion is provided at a position in the non-overlapping portion near the overlapping portion. The thin portion is a portion of the multilayer resin substrate which has a thickness smaller than the thickness in the overlapping portion in the laminating direction of the resin substrates.
Abstract:
A radio frequency module includes a plurality of insulating base material layers made of a thermoplastic resin defining a multilayer circuit board and including a cavity inside thereof, an IC chip disposed in the cavity and including a noise generation source, and planar ground conductive bodies provided in the multilayer circuit board. The planar ground conductive bodies are disposed on a layer not exposed to the inner surface of the cavity, and include inter-layer connection conductive bodies protruding in the direction of the noise generation source from the planar ground conductive bodies.
Abstract:
A dielectric element assembly includes a plurality of dielectric layers stacked on each other in a direction of lamination and extends in an x-axis direction. A signal line is provided in the dielectric element assembly and extends in the x-axis direction. A reference ground conductor is provided on a positive side in a z-axis direction relative to the signal line. An auxiliary ground conductor is provided on a negative side in the z-axis direction relative to the signal line. Via-hole conductors connect the reference ground conductor and the auxiliary ground conductor and are provided in the dielectric element assembly on the negative side relative to the center in a y-axis direction. A portion of the signal line in a section which includes the via-hole conductors is positioned on the positive side in the y-axis direction relative to another portion of the signal line in a section which does not include the via-hole conductors.
Abstract:
A high-frequency signal line includes a dielectric element body including regions and a plurality of flexible dielectric sheets. A signal conductive layer is provided in or on the dielectric element body. Ground conductive layers are provided in or on the dielectric element body and face the signal conductive layer. A distance between the ground conductive layer and the signal conductive layer in the region is smaller than a distance between the ground conductive layer and the signal conductive layer in the regions. The dielectric element body is bent in the region.
Abstract:
An electronic module includes a substrate, a built-in electronic component and a surface mount electronic component. A suckable region is provided on a front surface of the substrate. When viewed in a see-through manner in a direction perpendicular or substantially perpendicular to the front surface of the substrate, the suckable region is inside of a region in which one built-in electronic component is built in and a center of gravity of the electronic module is located inside of the suckable region. A protective layer is not provided on the front surface of the substrate on which the surface mount electronic component is mounted.
Abstract:
An antenna module including a dielectric substrate formed by stacking a plurality of dielectric layers, a radiating element formed on or in the dielectric substrate, a ground electrode facing the radiating element, and peripheral electrodes that are formed in a plurality of layers between the radiating element and the ground electrode at an outer periphery of the dielectric substrate.
Abstract:
A resin multilayer substrate includes a multilayer body including resin layers and adhesive layers that are laminated, via conductors in the resin layers, and bonding portions in the adhesive layers. The bonding portion is connected to the via conductor. One of the resin layer and the adhesive layer is a gas high-permeable layer having a higher gas permeability than the other one. The bonding portion includes an organic substance, or has a higher void content rate per unit plane sectional area than the via conductor. At least a portion of each of the bonding portions contacts the gas high-permeable layers.