Abstract:
An optoelectronic component device includes a plurality of optoelectronic components that provide and/or absorb electromagnetic radiation; a reflector arranged in a beam path of the electromagnetic radiation of the plurality of optoelectronic components and which has a surface that is at least partly reflective with respect to the provided electromagnetic radiation; wherein the plurality of optoelectronic components at least partly surround the reflector or are at least partly surrounded by the reflector; and the reflector reflects a provided electromagnetic radiation such that a predefined field distribution of the reflected electromagnetic radiation is formed in the image plane of the optoelectronic component device.
Abstract:
In one embodiment, the method is configured for producing optoelectronic semiconductor components (1) and includes the steps of: providing a leadframe assembly (20) with a multiplicity of leadframes (2), each having at least two leadframe parts (21, 22); forming at least a part of the leadframe assembly (20) with a housing material for housing bodies (4); dividing the leadframe assembly (20) between at least one part of the columns (C) and/or the rows (R), wherein the leadframes (2) remain arranged in a matrix-like manner; equipping the leadframes (2) with at least one optoelectronic semiconductor chip (3); testing at least one part of the leadframes (2) equipped with the semiconductor chips (3) and formed with the housing material after the step of dividing; and separating to form the semiconductor components (1) after the step of forming and after the step of testing.
Abstract:
A filament includes a multiplicity of light-emitting semiconductor chips, wherein the semiconductor chips are arranged on a carrier, the semiconductor chips being electrically contacted, a scattering structure is configured to scatter light of the light-emitting semiconductor chips, the scattering structure is formed by structuring a surface, a converter covers the light-emitting semiconductor chips, and the structuring of the surface is formed on a surface of the converter.
Abstract:
An optoelectronic component device includes a plurality of optoelectronic components that provide and/or absorb electromagnetic radiation; a reflector arranged in a beam path of the electromagnetic radiation of the plurality of optoelectronic components and which has a surface that is at least partly reflective with respect to the provided electromagnetic radiation; wherein the plurality of optoelectronic components at least partly surround the reflector or are at least partly surrounded by the reflector; and the reflector reflects a provided electromagnetic radiation such that a predefined field distribution of the reflected electromagnetic radiation is formed in the image plane of the optoelectronic component device.
Abstract:
In at least one embodiment, the ring light module (1) comprises a plurality of optoelectronic semiconductor components (2) for producing electromagnetic radiation (R). A reflector (3) of the ring light module (1) comprises a reflective surface (30). The semiconductor components (2) are mounted on a support (4). Viewed in plan view of a main radiation side (45) of the ring light module (1), the reflector (3) comprises at most two planes of symmetry. The reflector (3) tapers in the direction towards the main radiation side (45). At least some of the main emission directions (20) of adjacent semiconductor components (2) are oriented differently from each other. The main emission directions (20) point towards the reflective surface (30).
Abstract:
In one embodiment, the method is configured for producing optoelectronic semiconductor components (1) and includes the steps of: providing a leadframe assembly (20) with a multiplicity of leadframes (2), each having at least two leadframe parts (21, 22); forming at least a part of the leadframe assembly (20) with a housing material for housing bodies (4); dividing the leadframe assembly (20) between at least one part of the columns (C) and/or the rows (R), wherein the leadframes (2) remain arranged in a matrix-like manner; equipping the leadframes (2) with at least one optoelectronic semiconductor chip (3); testing at least one part of the leadframes (2) equipped with the semiconductor chips (3) and formed with the housing material after the step of dividing; and separating to form the semiconductor components (1) after the step of forming and after the step of testing.
Abstract:
A filament includes a radiation-transmissive substrate, a plurality of light emitting diodes and a converter layer, wherein the substrate has an upper side and a lower side facing away from the upper side, and the LEDs are arranged on the upper side of the substrate, the converter layer covers the LEDs, the upper side and the lower side of the substrate, and the converter layer has a first sublayer on the upper side and a second sublayer on the lower side, and the converter layer is configured to obtain an improved radiation profile of the filament such that the converter layer has a varying vertical layer thickness along a lateral direction, and/or the first sublayer and the second sublayer differ from one another in their geometry and/or material composition.
Abstract:
A ring light module having a plurality of optoelectronic semiconductor components for producing electromagnetic radiation, a reflector of the ring light module comprising a reflective surface, and a support. The semiconductor components are mounted on the support. In a plan view of a main radiation side of the ring light module, the reflector comprises at most two planes of symmetry. The reflector tapers in the direction towards the main radiation side. At least some of the main emission directions of adjacent optoelectronic semiconductor components are oriented differently from each other, and the main emission directions point towards the reflective surface.