Abstract:
A semiconductor memory device includes a memory cell array, an error correction code (ECC) engine, an input/output (I/O) gating circuit and a control logic circuit. The memory cell array includes bank arrays, each of the bank arrays includes a first sub array and a second sub array, and each of the first sub array and the second sub array includes a normal cell region to store data bits and a parity cell region to store parity bits. The ECC engine generates the parity bits and corrects error bit. The I/O gating circuit is connected between the ECC engine and the memory cell array. The control logic circuit controls the I/O gating circuit to perform column access to the normal cell region according to a multiple of a burst length and to perform column access to the parity cell region according to a non-multiple of the burst length partially.
Abstract:
A semiconductor memory device includes a control logic and a memory cell array in which a plurality of memory cells are arranged. The memory cell array includes a plurality of bank arrays, and each of the plurality of bank arrays includes a plurality of sub-arrays. The control logic controls an access to the memory cell array based on a command and an address signal. The control logic dynamically sets a keep-away zone that includes a plurality of memory cell rows which are deactivated based on a first word-line when the first word-line is enabled. The first word-line is coupled to a first memory cell row of a first sub-array of the plurality of sub-arrays. Therefore, increased timing parameters may be compensated, and parallelism may be increased.
Abstract:
A semiconductor memory device includes an error correction code (ECC) engine, a memory cell array, an input/output (I/O) gating circuit and a control logic circuit. The memory cell array includes a normal cell region configured to store main data and a parity cell region configured to selectively store parity data which the ECC engine generates based on the main data, and sub data received from outside of the semiconductor memory device. The control logic circuit controls the ECC engine to selectively perform an ECC encoding and an ECC decoding on the main data and controls the I/O gating circuit to store the sub data in at least a portion of the parity cell region.
Abstract:
A semiconductor memory device may include a cell array comprising a plurality of memory cells, each memory cell connected to a word line and a bit line, the cell array divided into a plurality of blocks, each block including a plurality of word lines, the plurality of blocks including at least a first defective block; a nonvolatile storage circuit configured to store address information of the first defective block, and to output the address information to an external device; and a fuse circuit configured to cut off an activation of word lines of the first defective block.
Abstract:
A semiconductor memory device includes a memory cell array, sub word-line drivers and power selection switches. The memory cell array includes memory cell rows coupled to word lines. The sub word line drivers are coupled to the word lines. The power selection switches are coupled to the sub word-line drivers. Each power selection switch controls a deactivation voltage level of a first word-line activated from the word-lines and an off-voltage level of a second word line adjacent to the first word line so that the deactivation voltage level and the off-voltage level have at least one of a ground voltage, a first negative voltage and a second negative voltage. The ground voltage, the first negative voltage and the second negative voltage have different voltage levels from each other.
Abstract:
A semiconductor memory device includes a memory cell array in which a plurality of memory cells are arranged. The semiconductor memory device includes an error correcting code (ECC) circuit configured to generate parity data based on main data, write a codeword including the main data and the parity data in the memory cell array, read the codeword from a selected memory cell row to generate syndromes, and correct errors in the read codeword on a per symbol basis based on the syndromes. The main data includes first data of a first memory cell of the selected memory cell row and second data of a second memory cell of the selected memory cell row. The first data and the second data are assigned to one symbol of a plurality of symbols, and the first memory cell and the second memory cell are adjacent to each other in the memory cell array.
Abstract:
A memory system includes a semiconductor memory device and a memory controller. The semiconductor memory device includes a plurality of dynamic memory cells. The memory controller controls the semiconductor memory device. The memory controller applies an auto-refresh command to the semiconductor memory device at each refresh interval of the semiconductor memory device such that the semiconductor memory performs a refresh operation in a normal mode, and does not apply the auto-refresh command to the semiconductor memory device during a self-refresh interval in which the semiconductor memory performs a self-refresh operation. After the semiconductor memory device exits from the self-refresh interval, the memory controller adjusts an application of the auto-refresh command in the normal mode by reflecting information of the self-refresh interval.
Abstract:
A semiconductor memory device includes an error correction code (ECC) engine, a memory cell array, an input/output (I/O) gating circuit and a control logic circuit. The memory cell array includes a normal cell region configured to store main data and a parity cell region configured to selectively store parity data which the ECC engine generates based on the main data, and sub data received from outside of the semiconductor memory device. The control logic circuit controls the ECC engine to selectively perform an ECC encoding and an ECC decoding on the main data and controls the I/O gating circuit to store the sub data in at least a portion of the parity cell region.
Abstract:
A memory device includes a memory cell array, an intensively accessed row detection circuit, and a refresh control circuit. The memory cell array includes a plurality of memory cell rows. The intensively accessed row detection circuit generates an intensively accessed row address indicating an intensively accessed memory cell row among the plurality of memory cell rows based on an accumulated access time for each of the plurality of memory cell rows. The refresh control unit preferentially refreshes neighboring memory cell rows adjacent to the intensively accessed memory cell row indicated by the intensively accessed row address when receiving the intensively accessed row address from the intensively accessed row detection unit. The memory device effectively reduces a rate of data loss.
Abstract:
A memory device includes a memory cell array, an intensively accessed row detection circuit, and a refresh control circuit. The memory cell array includes a plurality of memory cell rows. The intensively accessed row detection circuit generates an intensively accessed row address indicating an intensively accessed memory cell row among the plurality of memory cell rows based on an accumulated access time for each of the plurality of memory cell rows. The refresh control unit preferentially refreshes neighboring memory cell rows adjacent to the intensively accessed memory cell row indicated by the intensively accessed row address when receiving the intensively accessed row address from the intensively accessed row detection unit. The memory device effectively reduces a rate of data loss.